File size: 9,163 Bytes
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#!/usr/bin/env python
"""
Script to test rate limits of Hugging Face Inference API providers.
Spams requests to a model/provider and collects error messages.

Usage: python test_provider_rate_limits.py --model "model_name" --provider "provider_name" --requests 50
"""

import argparse
import json
import time
import os
import requests
import sys
import logging
from concurrent.futures import ThreadPoolExecutor
from collections import Counter
from typing import Dict, List, Tuple
from dotenv import load_dotenv

# Add parent directory to path to import from tasks
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from tasks.get_available_model_provider import prioritize_providers

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger("rate_limit_test")

# Default model to test
DEFAULT_MODEL = "meta-llama/Llama-3.3-70B-Instruct"

def send_request(model: str, provider: str, token: str, request_id: int) -> Dict:
    """
    Send a single request to the model with the given provider.
    
    Args:
        model: Model name
        provider: Provider name
        token: HF token
        request_id: ID for this request
        
    Returns:
        Dictionary with request info and result
    """
    headers = {
        "Authorization": f"Bearer {token}",
        "Content-Type": "application/json"
    }
    
    payload = {
        "inputs": f"Request {request_id}: Hello, what do you thing about the future of AI? And divide me 10 by {request_id}",
        "parameters": {
            "max_new_tokens": 10000,
            "provider": provider
        }
    }
    
    api_url = f"https://api-inference.huggingface.co/models/{model}"
    
    start_time = time.time()
    try:
        response = requests.post(api_url, headers=headers, json=payload, timeout=15)
        end_time = time.time()
        
        result = {
            "request_id": request_id,
            "status_code": response.status_code,
            "time_taken": end_time - start_time,
            "headers": dict(response.headers),
            "success": response.status_code == 200,
        }
        
        if response.status_code != 200:
            try:
                error_data = response.json()
                if isinstance(error_data, dict) and "error" in error_data:
                    result["error_message"] = error_data["error"]
                else:
                    result["error_message"] = str(error_data)
            except:
                result["error_message"] = response.text
        
        return result
    
    except Exception as e:
        end_time = time.time()
        return {
            "request_id": request_id,
            "status_code": 0,
            "time_taken": end_time - start_time,
            "success": False,
            "error_message": str(e)
        }

def run_rate_limit_test(model: str, provider: str = None, num_requests: int = 50, 
                       max_workers: int = 10, delay: float = 0.1) -> List[Dict]:
    """
    Run a rate limit test by sending multiple requests to the specified model/provider.
    
    Args:
        model: Model to test
        provider: Provider to test (if None, will use first available)
        num_requests: Number of requests to send
        max_workers: Maximum number of concurrent workers
        delay: Delay between batches of requests
        
    Returns:
        List of results for each request
    """
    # Load environment variables
    load_dotenv()
    
    # Get HF token
    hf_token = os.environ.get("HF_TOKEN")
    if not hf_token:
        logger.error("HF_TOKEN not defined in environment")
        return []
    
    # If provider not specified, get first available
    if not provider:
        from tasks.get_available_model_provider import get_available_model_provider
        provider = get_available_model_provider(model)
        if not provider:
            logger.error(f"No available provider found for {model}")
            return []
    
    logger.info(f"Testing rate limits for {model} with provider: {provider}")
    logger.info(f"Sending {num_requests} requests with {max_workers} concurrent workers")
    
    # Send requests in parallel
    results = []
    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        future_to_id = {
            executor.submit(send_request, model, provider, hf_token, i): i 
            for i in range(num_requests)
        }
        
        completed = 0
        for future in future_to_id:
            result = future.result()
            results.append(result)
            
            completed += 1
            if completed % 10 == 0:
                logger.info(f"Completed {completed}/{num_requests} requests")
            
            # Add a small delay periodically to avoid overwhelming the API
            if completed % max_workers == 0:
                time.sleep(delay)
    
    return results

def analyze_results(results: List[Dict]) -> Dict:
    """
    Analyze the results of the rate limit test.
    
    Args:
        results: List of request results
        
    Returns:
        Dictionary with analysis
    """
    total_requests = len(results)
    successful = sum(1 for r in results if r["success"])
    failed = total_requests - successful
    
    # Count different error messages
    error_messages = Counter(r.get("error_message") for r in results if not r["success"])
    
    # Calculate timing statistics
    times = [r["time_taken"] for r in results]
    avg_time = sum(times) / len(times) if times else 0
    
    # Check for rate limiting headers
    rate_limit_headers = set()
    for r in results:
        if "headers" in r:
            for header in r["headers"]:
                if "rate" in header.lower() or "limit" in header.lower():
                    rate_limit_headers.add(header)
    
    return {
        "total_requests": total_requests,
        "successful_requests": successful,
        "failed_requests": failed,
        "success_rate": successful / total_requests if total_requests > 0 else 0,
        "average_time": avg_time,
        "error_messages": dict(error_messages),
        "rate_limit_headers": list(rate_limit_headers)
    }

def display_results(results: List[Dict], analysis: Dict) -> None:
    """
    Display the results of the rate limit test.
    
    Args:
        results: List of request results
        analysis: Analysis of results
    """
    print("\n" + "="*80)
    print(f"RATE LIMIT TEST RESULTS")
    print("="*80)
    
    print(f"\nTotal Requests: {analysis['total_requests']}")
    print(f"Successful: {analysis['successful_requests']} ({analysis['success_rate']*100:.1f}%)")
    print(f"Failed: {analysis['failed_requests']}")
    print(f"Average Time: {analysis['average_time']:.3f} seconds")
    
    if analysis["rate_limit_headers"]:
        print("\nRate Limit Headers Found:")
        for header in analysis["rate_limit_headers"]:
            print(f"  - {header}")
    
    if analysis["error_messages"]:
        print("\nError Messages:")
        for msg, count in analysis["error_messages"].items():
            print(f"  - [{count} occurrences] {msg}")
    
    # Print sample of headers from a failed request
    failed_requests = [r for r in results if not r["success"]]
    if failed_requests:
        print("\nSample Headers from a Failed Request:")
        for header, value in failed_requests[0].get("headers", {}).items():
            print(f"  {header}: {value}")

def main():
    """
    Main entry point for the script.
    """
    parser = argparse.ArgumentParser(description="Test rate limits of Hugging Face Inference API providers.")
    parser.add_argument("--model", type=str, default=DEFAULT_MODEL, help="Name of the model to test")
    parser.add_argument("--provider", type=str, help="Name of the provider to test (if not specified, will use first available)")
    parser.add_argument("--requests", type=int, default=50, help="Number of requests to send")
    parser.add_argument("--workers", type=int, default=10, help="Maximum number of concurrent workers")
    parser.add_argument("--delay", type=float, default=0.1, help="Delay between batches of requests")
    parser.add_argument("--output", type=str, help="Path to save results as JSON (optional)")
    
    args = parser.parse_args()
    
    # Run the test
    results = run_rate_limit_test(
        model=args.model,
        provider=args.provider,
        num_requests=args.requests,
        max_workers=args.workers,
        delay=args.delay
    )
    
    if not results:
        logger.error("Test failed to run properly")
        return
    
    # Analyze the results
    analysis = analyze_results(results)
    
    # Display the results
    display_results(results, analysis)
    
    # Save results if requested
    if args.output:
        with open(args.output, "w") as f:
            json.dump({
                "results": results,
                "analysis": analysis
            }, f, indent=2)
        logger.info(f"Results saved to {args.output}")

if __name__ == "__main__":
    main()