File size: 6,090 Bytes
0e34dc4
 
 
 
 
 
13efede
 
 
0e34dc4
81e0b0c
0e34dc4
 
 
 
 
13efede
 
 
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
81e0b0c
0e34dc4
 
 
 
 
81e0b0c
 
 
 
 
0e34dc4
 
 
 
 
 
 
 
 
e98040e
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c750639
0e34dc4
 
 
 
 
 
 
 
 
c750639
0e34dc4
 
 
 
c750639
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c750639
 
 
0e34dc4
 
 
 
 
 
e097fac
0e34dc4
 
 
 
 
 
 
 
4724e8f
eee5a9a
0e34dc4
 
 
c750639
0e34dc4
 
 
c750639
 
 
 
e097fac
 
 
c750639
 
 
 
e097fac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import logging
import json
from huggingface_hub import model_info, InferenceClient
from dotenv import load_dotenv

# Load environment variables once at the module level
load_dotenv()

# Define preferred providers
PREFERRED_PROVIDERS = ["fireworks-ai","sambanova", "novita"]

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

def prioritize_providers(providers):
    """Prioritize preferred providers, keeping all others."""
    return sorted(providers, key=lambda provider: provider not in PREFERRED_PROVIDERS)

def test_provider(model_name: str, provider: str, verbose: bool = False) -> bool:
    """
    Test if a specific provider is available for a model using InferenceClient
    
    Args:
        model_name: Name of the model
        provider: Provider to test
        verbose: Whether to log detailed information
        
    Returns:
        True if the provider is available, False otherwise
    """

    try:
        # Get HF token from environment
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            raise ValueError("HF_TOKEN not defined in environment")
        # Get HF token from environment
        hf_organization = os.environ.get("HF_ORGANIZATION")
        if not hf_organization:
            raise ValueError("HF_ORGANIZATION not defined in environment")
        
        
        if verbose:
            logger.info(f"Testing provider {provider} for model {model_name}")
        
        # Initialize the InferenceClient with the specific provider
        client = InferenceClient(
            model=model_name,
            token=hf_token,
            provider=provider,
            # bill_to=hf_organization,
            timeout=10  # Increased timeout to allow model loading
        )
            
        try:
            # Use the chat completions method for testing
            response = client.chat_completion(
                messages=[{"role": "user", "content": "Hello"}],
                max_tokens=5
            )
            
            if verbose:
                logger.info(f"Provider {provider} is available for {model_name}")
            return True
            
        except Exception as e:
            if verbose:
                error_message = str(e)
                logger.warning(f"Error with provider {provider}: {error_message}")
                
                # Log specific error types if we can identify them
                if "status_code=429" in error_message:
                    logger.warning(f"Provider {provider} rate limited. You may need to wait or upgrade your plan.")
                elif "status_code=401" in error_message:
                    logger.warning(f"Authentication failed for provider {provider}. Check your token.")
                elif "status_code=503" in error_message:
                    logger.warning(f"Provider {provider} service unavailable. Model may be loading or provider is down.")
                elif "timed out" in error_message.lower():
                    logger.warning(f"Timeout error with provider {provider} - request timed out after 10 seconds")
            return False
            
    except Exception as e:
        if verbose:
            logger.warning(f"Error in test_provider: {str(e)}")
        return False

def get_available_model_provider(model_name, verbose=False):
    """
    Get the first available provider for a given model.
    
    Args:
        model_name: Name of the model on the Hub
        verbose: Whether to log detailed information
        
    Returns:
        First available provider or None if none are available
    """
    try:
        # Get HF token from environment
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            raise ValueError("HF_TOKEN not defined in environment")
        
        # Get providers for the model and prioritize them
        info = model_info(model_name, expand="inferenceProviderMapping")
        if not hasattr(info, "inference_provider_mapping"):
            if verbose:
                logger.info(f"No inference providers found for {model_name}")
            return None
            
        providers = list(info.inference_provider_mapping.keys())
        if not providers:
            if verbose:
                logger.info(f"Empty list of providers for {model_name}")
            return None
            
        # Prioritize providers
        providers = prioritize_providers(providers)
        
        if verbose:
            logger.info(f"Available providers for {model_name}: {', '.join(providers)}")
        
        # Test each provider
        for provider in providers:
            if test_provider(model_name, provider, verbose):
                return provider
                
        # If we've tried all providers and none worked, log this but don't raise an exception
        if verbose:
            logger.error(f"No available providers for {model_name}")
        return None
        
    except Exception as e:
        if verbose:
            logger.error(f"Error in get_available_model_provider: {str(e)}")
        return None
        
if __name__ == "__main__":

    models = [
        "Qwen/QwQ-32B",
        "Qwen/Qwen2.5-72B-Instruct",
        "meta-llama/Llama-3.3-70B-Instruct",
        "deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
        "mistralai/Mistral-Small-24B-Instruct-2501",
        "meta-llama/Llama-3.1-8B-Instruct",
        "Qwen/Qwen2.5-32B-Instruct"
    ]

    providers = []
    unavailable_models = []

    for model in models:
        provider = get_available_model_provider(model, verbose=True)
        if provider:
            providers.append((model, provider))
        else:
            unavailable_models.append(model)

    for model, provider in providers:
        print(f"Model: {model}, Provider: {provider}")
        
    if unavailable_models:
        print(f"Models with no available providers: {', '.join(unavailable_models)}")
    
    print(f"Total Providers {len(providers)}: {providers}")