File size: 7,279 Bytes
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import logging
import json
from huggingface_hub import model_info, InferenceClient
from dotenv import load_dotenv

# Define preferred providers
PREFERRED_PROVIDERS = ["sambanova", "novita"]

def filter_providers(providers):
    """Filter providers to only include preferred ones."""
    return [provider for provider in providers if provider in PREFERRED_PROVIDERS]

def prioritize_providers(providers):
    """Prioritize preferred providers, keeping all others."""
    preferred = [provider for provider in providers if provider in PREFERRED_PROVIDERS]
    non_preferred = [provider for provider in providers if provider not in PREFERRED_PROVIDERS]
    return preferred + non_preferred

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

def is_vision_model(model_name: str) -> bool:
    """
    Check if the model is a vision model based on its name
    
    Args:
        model_name: Name of the model
        
    Returns:
        True if it's a vision model, False otherwise
    """
    vision_indicators = ["-VL-", "vision", "clip", "image"]
    return any(indicator in model_name.lower() for indicator in vision_indicators)

def get_test_payload(model_name: str) -> dict:
    """
    Get the appropriate test payload based on model type
    
    Args:
        model_name: Name of the model
        
    Returns:
        Dictionary containing the test payload
    """
    # We're only testing text models now
    return {
        "inputs": "Hello",
        "parameters": {
            "max_new_tokens": 5
        }
    }

def test_provider(model_name: str, provider: str, verbose: bool = False) -> bool:
    """
    Test if a specific provider is available for a model using InferenceClient
    
    Args:
        model_name: Name of the model
        provider: Provider to test
        verbose: Whether to log detailed information
        
    Returns:
        True if the provider is available, False otherwise
    """
    try:
        # Load environment variables
        load_dotenv()
        
        # Get HF token from environment
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            raise ValueError("HF_TOKEN not defined in environment")
        
        if verbose:
            logger.info(f"Testing provider {provider} for model {model_name}")
        
        # Initialize the InferenceClient with the specific provider
        client = InferenceClient(
            model=model_name,
            token=hf_token,
            provider=provider,
            timeout=10  # Increased timeout to allow model loading
        )
            
        try:
            # Use the chat completions method for testing
            response = client.chat_completion(
                messages=[{"role": "user", "content": "Hello"}],
                max_tokens=5
            )
            
            if verbose:
                logger.info(f"Provider {provider} is available for {model_name}")
            return True
            
        except Exception as e:
            if verbose:
                error_message = str(e)
                logger.error(f"Error with provider {provider}: {error_message}")
                
                # Log specific error types if we can identify them
                if "status_code=429" in error_message:
                    logger.warning(f"Provider {provider} rate limited. You may need to wait or upgrade your plan.")
                elif "status_code=401" in error_message:
                    logger.warning(f"Authentication failed for provider {provider}. Check your token.")
                elif "status_code=503" in error_message:
                    logger.warning(f"Provider {provider} service unavailable. Model may be loading or provider is down.")
                elif "timed out" in error_message.lower():
                    logger.error(f"Timeout error with provider {provider} - request timed out after 10 seconds")
            return False
            
    except Exception as e:
        if verbose:
            logger.error(f"Error in test_provider: {str(e)}")
        return False

def get_available_model_provider(model_name, verbose=False):
    """
    Get the first available provider for a given model.
    
    Args:
        model_name: Name of the model on the Hub
        verbose: Whether to log detailed information
        
    Returns:
        First available provider or None if none are available
    """
    try:
        # Load environment variables
        load_dotenv()
        
        # Get HF token from environment
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            raise ValueError("HF_TOKEN not defined in environment")
        
        # Get providers for the model and prioritize them
        info = model_info(model_name, expand="inferenceProviderMapping")
        if not hasattr(info, "inference_provider_mapping"):
            if verbose:
                logger.info(f"No inference providers found for {model_name}")
            return None
            
        providers = list(info.inference_provider_mapping.keys())
        if not providers:
            if verbose:
                logger.info(f"Empty list of providers for {model_name}")
            return None
            
        # Prioritize providers
        providers = prioritize_providers(providers)
        
        if verbose:
            logger.info(f"Available providers for {model_name}: {', '.join(providers)}")
        
        # Test each provider
        for provider in providers:
            if test_provider(model_name, provider, verbose):
                return provider
                
        return None
        
    except Exception as e:
        if verbose:
            logger.error(f"Error in get_available_model_provider: {str(e)}")
        return None

if __name__ == "__main__":
    # # Example usage with verbose mode enabled
    # model = "Qwen/Qwen2.5-72B-Instruct"
    
    # # Test sambanova provider
    # print("\nTesting sambanova provider:")
    # sambanova_available = test_provider(model, "sambanova", verbose=True)
    # print(f"sambanova available: {sambanova_available}")
    
    # # Test novita provider
    # print("\nTesting novita provider:")
    # novita_available = test_provider(model, "novita", verbose=True)
    # print(f"novita available: {novita_available}")
    
    # # Test automatic provider selection
    # print("\nTesting automatic provider selection:")
    # provider = get_available_model_provider(model, verbose=True)
    # print(f"Selected provider: {provider}") 

    models = [
        "Qwen/QwQ-32B",
        "Qwen/Qwen2.5-72B-Instruct",
        "meta-llama/Llama-3.3-70B-Instruct",
        "deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
        "mistralai/Mistral-Small-24B-Instruct-2501",
    ]

    providers = []

    for model in models:
        provider = get_available_model_provider(model, verbose=True)
        providers.append(provider)

    print(f"Providers {len(providers)}: {providers}")
    

    # print("\nTesting novita provider:")
    # novita_available = test_provider("deepseek-ai/DeepSeek-V3-0324", "novita", verbose=True)
    # print(f"novita available: {novita_available}")