File size: 10,819 Bytes
0e34dc4
 
 
 
 
4759fe1
0e34dc4
13efede
 
 
0e34dc4
 
 
 
13efede
 
 
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
81e0b0c
0e34dc4
4759fe1
 
 
0e34dc4
 
 
 
81e0b0c
 
 
 
 
0e34dc4
 
 
 
 
 
 
 
 
e98040e
d2805fc
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c750639
0e34dc4
 
 
 
 
 
 
 
 
c750639
0e34dc4
 
 
 
c750639
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2805fc
 
0e34dc4
 
 
d2805fc
95bf1fc
d2805fc
 
 
 
 
 
 
 
 
 
 
0e34dc4
d2805fc
0e34dc4
 
 
d2805fc
0e34dc4
 
 
d2805fc
0e34dc4
d2805fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e34dc4
c750639
 
d2805fc
0e34dc4
 
 
 
 
 
e097fac
4759fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e34dc4
 
 
4759fe1
 
0e34dc4
 
 
 
4759fe1
 
 
 
0e34dc4
4759fe1
 
c750639
4759fe1
c750639
4759fe1
 
 
 
 
 
 
 
 
c750639
4759fe1
c750639
4759fe1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import logging
import json
from huggingface_hub import model_info, InferenceClient
from dotenv import load_dotenv
from config.models_config import PREFERRED_PROVIDERS, DEFAULT_BENCHMARK_MODEL, ALTERNATIVE_BENCHMARK_MODELS

# Load environment variables once at the module level
load_dotenv()

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

def prioritize_providers(providers):
    """Prioritize preferred providers, keeping all others."""
    return sorted(providers, key=lambda provider: provider not in PREFERRED_PROVIDERS)

def test_provider(model_name: str, provider: str, verbose: bool = False) -> bool:
    """
    Test if a specific provider is available for a model using InferenceClient
    
    Args:
        model_name: Name of the model
        provider: Provider to test
        verbose: Whether to log detailed information
        
    Returns:
        True if the provider is available, False otherwise
    """

    try:

        load_dotenv()
        
        # Get HF token from environment
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            raise ValueError("HF_TOKEN not defined in environment")
        # Get HF token from environment
        hf_organization = os.environ.get("HF_ORGANIZATION")
        if not hf_organization:
            raise ValueError("HF_ORGANIZATION not defined in environment")
        
        
        if verbose:
            logger.info(f"Testing provider {provider} for model {model_name}")
        
        # Initialize the InferenceClient with the specific provider
        client = InferenceClient(
            model=model_name,
            token=hf_token,
            provider=provider,
            # bill_to=hf_organization,
            timeout=3  # Increased timeout to allow model loading
        )
            
        try:
            # Use the chat completions method for testing
            response = client.chat_completion(
                messages=[{"role": "user", "content": "Hello"}],
                max_tokens=5
            )
            
            if verbose:
                logger.info(f"Provider {provider} is available for {model_name}")
            return True
            
        except Exception as e:
            if verbose:
                error_message = str(e)
                logger.warning(f"Error with provider {provider}: {error_message}")
                
                # Log specific error types if we can identify them
                if "status_code=429" in error_message:
                    logger.warning(f"Provider {provider} rate limited. You may need to wait or upgrade your plan.")
                elif "status_code=401" in error_message:
                    logger.warning(f"Authentication failed for provider {provider}. Check your token.")
                elif "status_code=503" in error_message:
                    logger.warning(f"Provider {provider} service unavailable. Model may be loading or provider is down.")
                elif "timed out" in error_message.lower():
                    logger.warning(f"Timeout error with provider {provider} - request timed out after 10 seconds")
            return False
            
    except Exception as e:
        if verbose:
            logger.warning(f"Error in test_provider: {str(e)}")
        return False

def get_available_model_provider(model_name, verbose=False):
    """
    Get the first available provider for a given model.
    
    Args:
        model_name: Name of the model on the Hub
        verbose: Whether to log detailed information
        
    Returns:
        First available provider or None if none are available
    """
    try:
        # Get HF token from environment
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            if verbose:
                logger.error("HF_TOKEN not defined in environment")
            raise ValueError("HF_TOKEN not defined in environment")
        
        # Get providers for the model and prioritize them
        try:
            info = model_info(model_name, token=hf_token, expand="inferenceProviderMapping")
            if not hasattr(info, "inference_provider_mapping"):
                if verbose:
                    logger.info(f"No inference providers found for {model_name}")
                return None
                
            providers = list(info.inference_provider_mapping.keys())
            if not providers:
                if verbose:
                    logger.info(f"Empty list of providers for {model_name}")
                return None
        except Exception as e:
            if verbose:
                logger.error(f"Error retrieving model info for {model_name}: {str(e)}")
            return None
            
        # Prioritize providers
        prioritized_providers = prioritize_providers(providers)
        
        if verbose:
            logger.info(f"Available providers for {model_name}: {', '.join(providers)}")
            logger.info(f"Prioritized providers: {', '.join(prioritized_providers)}")
        
        # Test each preferred provider first
        failed_providers = []
        for provider in prioritized_providers:
            if verbose:
                logger.info(f"Testing provider {provider} for {model_name}")
            
            try:
                if test_provider(model_name, provider, verbose):
                    if verbose:
                        logger.info(f"Provider {provider} is available for {model_name}")
                    return provider
                else:
                    failed_providers.append(provider)
                    if verbose:
                        logger.warning(f"Provider {provider} test failed for {model_name}")
            except Exception as e:
                failed_providers.append(provider)
                if verbose:
                    logger.error(f"Exception while testing provider {provider} for {model_name}: {str(e)}")
                
        # If all prioritized providers failed, try any remaining providers
        remaining_providers = [p for p in providers if p not in prioritized_providers and p not in failed_providers]
        
        if remaining_providers and verbose:
            logger.info(f"Trying remaining non-prioritized providers: {', '.join(remaining_providers)}")
            
        for provider in remaining_providers:
            if verbose:
                logger.info(f"Testing non-prioritized provider {provider} for {model_name}")
                
            try:
                if test_provider(model_name, provider, verbose):
                    if verbose:
                        logger.info(f"Non-prioritized provider {provider} is available for {model_name}")
                    return provider
            except Exception as e:
                if verbose:
                    logger.error(f"Exception while testing non-prioritized provider {provider}: {str(e)}")
                
        # If we've tried all providers and none worked, log this but don't raise an exception
        if verbose:
            logger.error(f"No available providers for {model_name}. Tried {len(failed_providers + remaining_providers)} providers.")
        return None
        
    except Exception as e:
        if verbose:
            logger.error(f"Error in get_available_model_provider: {str(e)}")
        return None
        
def test_models(verbose=True):
    """
    Test le modèle par défaut et les modèles alternatifs, puis retourne un résumé des résultats.
    
    Args:
        verbose: Afficher les logs détaillés
        
    Returns:
        Un dictionnaire avec les résultats des tests
    """
    results = {
        "default_model": None,
        "working_model": None,
        "provider": None,
        "all_models": {},
        "available_models": [],
        "unavailable_models": []
    }
    
    if verbose:
        print(f"Testing main default model: {DEFAULT_BENCHMARK_MODEL}")
        
    # Test du modèle par défaut
    provider = get_available_model_provider(DEFAULT_BENCHMARK_MODEL, verbose=verbose)
    
    if provider:
        if verbose:
            print(f"\n✅ SUCCESS: Found provider for default model {DEFAULT_BENCHMARK_MODEL}: {provider}")
        results["default_model"] = DEFAULT_BENCHMARK_MODEL
        results["working_model"] = DEFAULT_BENCHMARK_MODEL
        results["provider"] = provider
    else:
        if verbose:
            print(f"\n❌ DEFAULT MODEL FAILED: No provider found for {DEFAULT_BENCHMARK_MODEL}")
            print("Trying alternative models...")
        
        # Essayer les modèles alternatifs
        for alt_model in ALTERNATIVE_BENCHMARK_MODELS:
            if verbose:
                print(f"\nTrying alternative model: {alt_model}")
            alt_provider = get_available_model_provider(alt_model, verbose=verbose)
            if alt_provider:
                if verbose:
                    print(f"\n✅ SUCCESS: Found provider for alternative model {alt_model}: {alt_provider}")
                results["working_model"] = alt_model
                results["provider"] = alt_provider
                break
            elif verbose:
                print(f"❌ Failed to find provider for alternative model: {alt_model}")
        else:
            if verbose:
                print("\n❌ ALL MODELS FAILED: No provider found for any model")
    
    # Tester tous les modèles pour avoir une vue d'ensemble
    models = [
        "Qwen/QwQ-32B",
        "Qwen/Qwen2.5-72B-Instruct",
        "Qwen/Qwen2.5-32B-Instruct",
        "meta-llama/Llama-3.1-8B-Instruct",
        "meta-llama/Llama-3.3-70B-Instruct",
        "deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
        "mistralai/Mistral-Small-24B-Instruct-2501",
    ]
    
    if verbose:
        print("\n=== Testing all available models ===")
        
    for model in models:
        provider = get_available_model_provider(model, verbose)
        results["all_models"][model] = provider
        if provider:
            results["available_models"].append((model, provider))
        else:
            results["unavailable_models"].append(model)
    
    if verbose:
        print("\n=== Results Summary ===")
        for model, provider in results["available_models"]:
            print(f"Model: {model}, Provider: {provider}")
            
        if results["unavailable_models"]:
            print(f"Models with no available providers: {', '.join(results['unavailable_models'])}")
        
        print(f"Total Available Models: {len(results['available_models'])}")
    
    return results
        
if __name__ == "__main__":
    # Exécuter le test si le script est lancé directement
    test_results = test_models(verbose=True)