Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 22,429 Bytes
0e34dc4 4759fe1 0e34dc4 13efede 0e34dc4 13efede 0e34dc4 81e0b0c 0e34dc4 4759fe1 0e34dc4 97bea1c aae1c13 97bea1c 81e0b0c 97bea1c 0e34dc4 97bea1c aae1c13 97bea1c aae1c13 97bea1c e64aebd 97bea1c 0e34dc4 97bea1c 0e34dc4 97bea1c 0e34dc4 97bea1c 0e34dc4 97bea1c 0e34dc4 97bea1c 0e34dc4 d2805fc 0e34dc4 e64aebd d2805fc 97bea1c e64aebd d2805fc 97bea1c e64aebd d2805fc 97bea1c e64aebd d2805fc 0e34dc4 d2805fc 97bea1c 0e34dc4 d2805fc 0e34dc4 d2805fc 0e34dc4 d2805fc 0e34dc4 c750639 d2805fc 0e34dc4 e64aebd 97bea1c 4759fe1 aae1c13 97bea1c aae1c13 c4411e8 aae1c13 c4411e8 aae1c13 97bea1c aae1c13 97bea1c aae1c13 97bea1c aae1c13 97bea1c 4759fe1 aae1c13 4759fe1 aae1c13 4759fe1 0e34dc4 4759fe1 0e34dc4 e64aebd 4759fe1 aae1c13 e64aebd 0e34dc4 4759fe1 c750639 4759fe1 c750639 4759fe1 aae1c13 4759fe1 aae1c13 c750639 aae1c13 c750639 4759fe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import os
import logging
import json
from huggingface_hub import model_info, InferenceClient
from dotenv import load_dotenv
from config.models_config import PREFERRED_PROVIDERS, DEFAULT_BENCHMARK_MODEL, ALTERNATIVE_BENCHMARK_MODELS
# Load environment variables once at the module level
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
def prioritize_providers(providers):
"""Prioritize preferred providers, keeping all others."""
return sorted(providers, key=lambda provider: provider not in PREFERRED_PROVIDERS)
def test_provider(model_name: str, provider: str, verbose: bool = False) -> bool:
"""
Test if a specific provider is available for a model using InferenceClient
Args:
model_name: Name of the model
provider: Provider to test
verbose: Whether to log detailed information
Returns:
True if the provider is available, False otherwise
"""
try:
load_dotenv()
# Get HF token from environment
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
if verbose:
logger.warning("No HF_TOKEN found in environment variables. This will likely cause authentication failures.")
print("WARNING: HF_TOKEN is missing. Most model providers require valid authentication.")
# Essayer sans token (pour certains providers qui acceptent des requêtes anonymes)
return _test_provider_without_token(model_name, provider, verbose)
# Get HF organization from environment
hf_organization = os.environ.get("HF_ORGANIZATION")
if not hf_organization:
if verbose:
logger.warning("HF_ORGANIZATION not defined in environment")
if verbose:
logger.info(f"Testing provider {provider} for model {model_name}")
# Initialize the InferenceClient with the specific provider
try:
client = InferenceClient(
model=model_name,
token=hf_token,
provider=provider,
# bill_to=hf_organization if hf_organization else None,
timeout=3 # Increased timeout to allow model loading
)
try:
# Use the chat completions method for testing
response = client.chat_completion(
messages=[{"role": "user", "content": "Hello"}],
max_tokens=5
)
if verbose:
logger.info(f"Provider {provider} is available for {model_name}")
return True
except Exception as e:
if verbose:
error_message = str(e)
logger.warning(f"Error with provider {provider}: {error_message}")
# Log specific error types if we can identify them
if "status_code=429" in error_message:
logger.warning(f"Provider {provider} rate limited. You may need to wait or upgrade your plan.")
elif "status_code=401" in error_message or "status_code=403" in error_message:
logger.warning(f"Authentication failed for provider {provider}. Your HF_TOKEN may be invalid or expired.")
print(f"Authentication error with provider {provider}. Please check your HF_TOKEN.")
# Essayer sans token
if verbose:
logger.info(f"Trying provider {provider} without authentication")
return _test_provider_without_token(model_name, provider, verbose)
elif "status_code=503" in error_message:
logger.warning(f"Provider {provider} service unavailable. Model may be loading or provider is down.")
elif "timed out" in error_message.lower():
logger.warning(f"Timeout error with provider {provider} - request timed out after 10 seconds")
return False
except Exception as auth_error:
if "401" in str(auth_error) or "Unauthorized" in str(auth_error):
# En cas d'erreur d'authentification, essayer sans token
if verbose:
logger.warning(f"Authentication error with {provider}: {str(auth_error)}. Your HF_TOKEN may be invalid.")
print(f"Authentication error detected. Please verify your HF_TOKEN is valid and has appropriate permissions.")
return _test_provider_without_token(model_name, provider, verbose)
else:
if verbose:
logger.warning(f"Error creating client for {provider}: {str(auth_error)}")
return False
except Exception as e:
if verbose:
logger.warning(f"Error in test_provider: {str(e)}")
return False
def _test_provider_without_token(model_name: str, provider: str, verbose: bool = False) -> bool:
"""
Essaye de tester un provider sans token d'authentification
Args:
model_name: Nom du modèle
provider: Provider à tester
verbose: Afficher les logs détaillés
Returns:
True si le provider est disponible, False sinon
"""
try:
if verbose:
logger.info(f"Testing provider {provider} for model {model_name} without authentication")
# Initialize without token
client = InferenceClient(
model=model_name,
provider=provider,
timeout=3
)
try:
# Use the chat completions method for testing
response = client.chat_completion(
messages=[{"role": "user", "content": "Hello"}],
max_tokens=5
)
if verbose:
logger.info(f"Provider {provider} is available for {model_name} without authentication")
return True
except Exception as e:
if verbose:
logger.warning(f"Error with provider {provider} without authentication: {str(e)}")
return False
except Exception as e:
if verbose:
logger.warning(f"Error in _test_provider_without_token: {str(e)}")
return False
def get_available_model_provider(model_name, verbose=False):
"""
Get the first available provider for a given model.
Args:
model_name: Name of the model on the Hub
verbose: Whether to log detailed information
Returns:
First available provider or None if none are available
"""
try:
# Get HF token from environment
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
if verbose:
logger.error("HF_TOKEN not defined in environment")
raise ValueError("HF_TOKEN not defined in environment")
# Get providers for the model and prioritize them
info = None
try:
# Essayer avec le token
try:
if verbose:
logger.info(f"Trying to get model info for {model_name} with auth token")
info = model_info(model_name, token=hf_token, expand="inferenceProviderMapping")
except Exception as auth_error:
# Si l'authentification échoue, essayer sans token (pour les modèles publics)
if "401" in str(auth_error) or "Unauthorized" in str(auth_error):
if verbose:
logger.warning(f"Authentication failed for {model_name}, trying without token")
# Essayer de récupérer les infos sans token
try:
info = model_info(model_name, expand="inferenceProviderMapping")
except Exception as e:
if verbose:
logger.error(f"Failed to get model info without token: {str(e)}")
# Comme dernier recours, retourner la liste des providers par défaut pour tester
if verbose:
logger.warning(f"Using default providers list as fallback for {model_name}")
# Fournir une liste de providers de secours pour tester directement
return _test_fallback_providers(model_name, verbose)
else:
# Autre erreur, la relancer
raise auth_error
if not info or not hasattr(info, "inference_provider_mapping"):
if verbose:
logger.info(f"No inference providers found for {model_name}")
# Essayer avec la liste de providers par défaut
return _test_fallback_providers(model_name, verbose)
providers = list(info.inference_provider_mapping.keys())
if not providers:
if verbose:
logger.info(f"Empty list of providers for {model_name}")
# Essayer avec la liste de providers par défaut
return _test_fallback_providers(model_name, verbose)
except Exception as e:
if verbose:
logger.error(f"Error retrieving model info for {model_name}: {str(e)}")
# Essayer avec la liste de providers par défaut
return _test_fallback_providers(model_name, verbose)
# Prioritize providers
prioritized_providers = prioritize_providers(providers)
if verbose:
logger.info(f"Available providers for {model_name}: {', '.join(providers)}")
logger.info(f"Prioritized providers: {', '.join(prioritized_providers)}")
# Test each preferred provider first
failed_providers = []
for provider in prioritized_providers:
if verbose:
logger.info(f"Testing provider {provider} for {model_name}")
try:
if test_provider(model_name, provider, verbose):
if verbose:
logger.info(f"Provider {provider} is available for {model_name}")
return provider
else:
failed_providers.append(provider)
if verbose:
logger.warning(f"Provider {provider} test failed for {model_name}")
except Exception as e:
failed_providers.append(provider)
if verbose:
logger.error(f"Exception while testing provider {provider} for {model_name}: {str(e)}")
# If all prioritized providers failed, try any remaining providers
remaining_providers = [p for p in providers if p not in prioritized_providers and p not in failed_providers]
if remaining_providers and verbose:
logger.info(f"Trying remaining non-prioritized providers: {', '.join(remaining_providers)}")
for provider in remaining_providers:
if verbose:
logger.info(f"Testing non-prioritized provider {provider} for {model_name}")
try:
if test_provider(model_name, provider, verbose):
if verbose:
logger.info(f"Non-prioritized provider {provider} is available for {model_name}")
return provider
except Exception as e:
if verbose:
logger.error(f"Exception while testing non-prioritized provider {provider}: {str(e)}")
# If we've tried all providers and none worked, log this but don't raise an exception
if verbose:
logger.error(f"No available providers for {model_name}. Tried {len(failed_providers + remaining_providers)} providers.")
return None
except Exception as e:
if verbose:
logger.error(f"Error in get_available_model_provider: {str(e)}")
return None
def _test_fallback_providers(model_name, verbose=False):
"""
Fonction de secours qui teste une liste de providers communs sans passer par l'API
Args:
model_name: Nom du modèle
verbose: Afficher les logs détaillés
Returns:
Le premier provider disponible ou None
"""
# Liste de providers à tester en direct
default_providers = ["huggingface", "sambanova", "novita", "fireworks-ai", "together", "openai", "anthropic"]
if verbose:
logger.warning(f"Using fallback providers list for {model_name}: {', '.join(default_providers)}")
# Tester chaque provider directement
for provider in default_providers:
if verbose:
logger.info(f"Testing fallback provider {provider} for {model_name}")
try:
if test_provider(model_name, provider, verbose):
if verbose:
logger.info(f"FALLBACK: Provider {provider} is available for {model_name}")
return provider
except Exception as e:
if verbose:
logger.warning(f"FALLBACK: Error testing provider {provider} for {model_name}: {str(e)}")
return None
def test_models(verbose=True):
"""
Test le modèle par défaut et les modèles alternatifs, puis retourne un résumé des résultats.
Args:
verbose: Afficher les logs détaillés
Returns:
Un dictionnaire avec les résultats des tests
"""
results = {
"default_model": None,
"working_model": None,
"provider": None,
"all_models": {},
"available_models": [],
"unavailable_models": []
}
print("\n===== Checking HuggingFace Authentication =====")
# Obtenez le jeton HF
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
print("✅ HF_TOKEN is available")
# Vérifier si le token a un format valide (vérification simple)
if not hf_token.startswith("hf_"):
print("⚠️ WARNING: Your HF_TOKEN does not start with 'hf_' which is unusual. Please verify its format.")
# Ne montrer aucun caractère du token, juste indiquer sa présence
masked_token = "••••••••••"
# Vérifier la validité du token en testant directement l'API d'inférence
import requests
try:
# Test avec un modèle public simple (gpt2)
test_model = "gpt2"
api_url = f"https://api-inference.huggingface.co/models/{test_model}"
print(f"Testing token with inference API on public model {test_model}...")
headers = {"Authorization": f"Bearer {hf_token}"}
payload = {"inputs": "Hello, how are you?"}
response = requests.post(api_url, headers=headers, json=payload, timeout=10)
if response.status_code in [200, 503]: # 503 = modèle en cours de chargement, mais le token est accepté
print(f"✅ HF_TOKEN validated - Token accepted by the inference API! Status: {response.status_code}")
if response.status_code == 503:
print("ℹ️ Model is loading, but token is valid")
# Si le token est valide pour l'API d'inférence, vérifions également si nous pouvons obtenir
# des informations sur l'utilisateur (mais ce n'est pas bloquant si ça échoue)
try:
whoami_response = requests.get(
"https://huggingface.co/api/whoami",
headers={"Authorization": f"Bearer {hf_token}"}
)
if whoami_response.status_code == 200:
user_info = whoami_response.json()
print(f"✅ Additional info - Authenticated as: {user_info.get('name', 'Unknown user')}")
# Vérifier si l'utilisateur a accès à des modèles payants
if user_info.get('canPay', False):
print("✅ Your account has payment methods configured - you may have access to premium models")
else:
print("ℹ️ Your account does not have payment methods configured - access to premium models may be limited")
except Exception:
# Ignorer les erreurs lors de la récupération des infos utilisateur
pass
else:
print(f"❌ HF_TOKEN validation failed with status code: {response.status_code}")
error_message = "Unknown error"
try:
error_data = response.json()
if "error" in error_data:
error_message = error_data["error"]
print(f"❌ Error message: {error_message}")
except:
print(f"❌ Error message: {response.text}")
print("⚠️ Most model providers will not work with invalid credentials")
# Test alternatif avec l'endpoint status
try:
print("Attempting alternative validation with status endpoint...")
status_url = "https://api-inference.huggingface.co/status"
status_response = requests.get(status_url, headers=headers, timeout=10)
if status_response.status_code == 200:
print("✅ Token can access the status endpoint. This is partially good news.")
else:
print(f"❌ Status endpoint test also failed: {status_response.status_code}")
except Exception as e:
print(f"❌ Alternative validation also failed: {str(e)}")
except Exception as e:
print(f"❌ Error validating HF_TOKEN with inference API: {str(e)}")
else:
print("❌ HF_TOKEN is missing - authentication to HuggingFace API will fail")
print("⚠️ Most models and providers require authentication")
# Obtenez l'organisation HF
hf_organization = os.environ.get("HF_ORGANIZATION")
if hf_organization:
print(f"✅ HF_ORGANIZATION is available: {hf_organization}")
else:
print("ℹ️ HF_ORGANIZATION is not set")
if verbose:
print(f"\n===== Testing main default model: {DEFAULT_BENCHMARK_MODEL} =====")
# Test du modèle par défaut
provider = get_available_model_provider(DEFAULT_BENCHMARK_MODEL, verbose=verbose)
if provider:
if verbose:
print(f"\n✅ SUCCESS: Found provider for default model {DEFAULT_BENCHMARK_MODEL}: {provider}")
results["default_model"] = DEFAULT_BENCHMARK_MODEL
results["working_model"] = DEFAULT_BENCHMARK_MODEL
results["provider"] = provider
else:
if verbose:
print(f"\n❌ DEFAULT MODEL FAILED: No provider found for {DEFAULT_BENCHMARK_MODEL}")
print("Trying alternative models...")
# Essayer les modèles alternatifs
for alt_model in ALTERNATIVE_BENCHMARK_MODELS:
if verbose:
print(f"\nTrying alternative model: {alt_model}")
alt_provider = get_available_model_provider(alt_model, verbose=verbose)
if alt_provider:
if verbose:
print(f"\n✅ SUCCESS: Found provider for alternative model {alt_model}: {alt_provider}")
results["working_model"] = alt_model
results["provider"] = alt_provider
break
elif verbose:
print(f"❌ Failed to find provider for alternative model: {alt_model}")
else:
if verbose:
print("\n❌ ALL MODELS FAILED: No provider found for any model")
print("\n⚠️ This is likely due to authentication issues with your HF_TOKEN")
print("⚠️ Please check your token or try using models that don't require authentication")
# Tester tous les modèles pour avoir une vue d'ensemble
models = [
"Qwen/QwQ-32B",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-32B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.3-70B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
"mistralai/Mistral-Small-24B-Instruct-2501",
]
if verbose:
print("\n===== Testing all available models =====")
for model in models:
provider = get_available_model_provider(model, verbose)
results["all_models"][model] = provider
if provider:
results["available_models"].append((model, provider))
else:
results["unavailable_models"].append(model)
if verbose:
print("\n===== Results Summary =====")
if results["available_models"]:
print("Models with available providers:")
for model, provider in results["available_models"]:
print(f"✅ Model: {model}, Provider: {provider}")
else:
print("❌ No models with available providers found")
print("⚠️ Please check your HF_TOKEN and permissions")
if results["unavailable_models"]:
print("\nModels with no available providers:")
for model in results["unavailable_models"]:
print(f"❌ {model}")
print(f"\nTotal Available Models: {len(results['available_models'])}")
print(f"Total Unavailable Models: {len(results['unavailable_models'])}")
return results
if __name__ == "__main__":
# Exécuter le test si le script est lancé directement
test_results = test_models(verbose=True) |