Spaces:
Sleeping
Sleeping
Younesse Kaddar
commited on
Commit
·
c3e31ca
1
Parent(s):
c8d1710
update
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pinecone
|
3 |
+
import streamlit as st
|
4 |
+
from langchain.document_loaders import TextLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import OpenAIEmbeddings
|
7 |
+
from langchain.vectorstores import Chroma, Pinecone
|
8 |
+
from langchain.chains import ConversationalRetrievalChain, LLMChain, SimpleSequentialChain
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from langchain.llms import OpenAI
|
11 |
+
from langchain.schema import (AIMessage, HumanMessage, SystemMessage)
|
12 |
+
from langchain.chat_models import ChatOpenAI, ChatAnthropic
|
13 |
+
from langchain import PromptTemplate
|
14 |
+
from dotenv import load_dotenv, find_dotenv
|
15 |
+
|
16 |
+
load_dotenv(find_dotenv())
|
17 |
+
|
18 |
+
# pinecone.init(api_key=os.getenv("PINECONE_API_KEY"), environment=os.getenv("PINECONE_ENVIRONMENT"))
|
19 |
+
|
20 |
+
dataset_path = "./dataset.txt"
|
21 |
+
loader = TextLoader(dataset_path)
|
22 |
+
comments = loader.load_and_split()
|
23 |
+
|
24 |
+
embeddings = OpenAIEmbeddings(model_name="ada")
|
25 |
+
vectordb = Chroma.from_documents(comments, embedding=embeddings, persist_directory=".")
|
26 |
+
vectordb.persist()
|
27 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
28 |
+
|
29 |
+
# Assuming that GPT-4 is used for grammar, structure, and fact-checking
|
30 |
+
# and Claude is used for providing tips and encouraging students to do their own research
|
31 |
+
grammar_llm = OpenAI(temperature=0.8)
|
32 |
+
tips_llm = Claude(temperature=0.8)
|
33 |
+
|
34 |
+
grammar_qa = ConversationalRetrievalChain.from_llm(grammar_llm, vectordb.as_retriever(), memory=memory)
|
35 |
+
tips_qa = ConversationalRetrievalChain.from_llm(tips_llm, vectordb.as_retriever(), memory=memory)
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
st.title('AI Statement Reviewer')
|
40 |
+
|
41 |
+
user_input = st.text_area("Enter your personal statement here:")
|
42 |
+
|
43 |
+
if st.button('Get feedback'):
|
44 |
+
grammar_result = grammar_qa({"question": user_input})
|
45 |
+
tips_result = tips_qa({"question": user_input})
|
46 |
+
st.write("Grammar and Structure Feedback:")
|
47 |
+
st.write(grammar_result["answer"])
|
48 |
+
st.write("Tips and Recommendations:")
|
49 |
+
st.write(tips_result["answer"])
|
50 |
+
|
51 |
+
|