yoshibomball123 commited on
Commit
0af2796
Β·
verified Β·
1 Parent(s): 0c52219

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -56
app.py DELETED
@@ -1,56 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import torch
4
- from transformers import pipeline
5
- import cv2
6
-
7
- # Load Hugging Face face swap model using the DeepFaceLab model by senhan007
8
- face_swap_model = pipeline("image-to-image", model="senhan007/DeepFaceLab")
9
-
10
- def swap_faces(image, video):
11
- image_path = "uploaded_image.jpg"
12
- video_path = "uploaded_video.mp4"
13
- output_path = "swapped_video.mp4"
14
-
15
- # Save uploaded files
16
- image.save(image_path)
17
- video.save(video_path)
18
-
19
- # Open the video file
20
- video_cap = cv2.VideoCapture(video_path)
21
- frame_rate = video_cap.get(cv2.CAP_PROP_FPS)
22
- width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
23
- height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
24
-
25
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
26
- output_video = cv2.VideoWriter(output_path, fourcc, frame_rate, (width, height))
27
-
28
- while True:
29
- ret, frame = video_cap.read()
30
- if not ret:
31
- break
32
-
33
- # Apply the face swap (replace with model logic)
34
- # For now, this is just a placeholder; you'll need to integrate the model inference here.
35
- swapped_frame = frame
36
-
37
- output_video.write(swapped_frame)
38
-
39
- video_cap.release()
40
- output_video.release()
41
-
42
- return output_path
43
-
44
- # Create the Gradio interface
45
- iface = gr.Interface(
46
- fn=swap_faces,
47
- inputs=[
48
- gr.Image(type="pil", label="Upload Reference Image"),
49
- gr.Video(type="file", label="Upload Video"),
50
- ],
51
- outputs=gr.Video(label="Face Swapped Video"),
52
- title="Video Face Swap",
53
- description="Upload a reference image and a video to swap faces."
54
- )
55
-
56
- iface.launch()