Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import torch | |
from transformers import pipeline | |
import cv2 | |
# Load Hugging Face face swap model using the DeepFaceLab model by senhan007 | |
face_swap_model = pipeline("image-to-image", model="senhan007/DeepFaceLab") | |
def swap_faces(image, video): | |
image_path = "uploaded_image.jpg" | |
video_path = "uploaded_video.mp4" | |
output_path = "swapped_video.mp4" | |
# Save uploaded files | |
image.save(image_path) | |
video.save(video_path) | |
# Open the video file | |
video_cap = cv2.VideoCapture(video_path) | |
frame_rate = video_cap.get(cv2.CAP_PROP_FPS) | |
width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
output_video = cv2.VideoWriter(output_path, fourcc, frame_rate, (width, height)) | |
while True: | |
ret, frame = video_cap.read() | |
if not ret: | |
break | |
# Apply the face swap (replace with model logic) | |
# For now, this is just a placeholder; you'll need to integrate the model inference here. | |
swapped_frame = frame | |
output_video.write(swapped_frame) | |
video_cap.release() | |
output_video.release() | |
return output_path | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=swap_faces, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Reference Image"), | |
gr.Video(type="file", label="Upload Video"), | |
], | |
outputs=gr.Video(label="Face Swapped Video"), | |
title="Video Face Swap", | |
description="Upload a reference image and a video to swap faces." | |
) | |
iface.launch() | |