from transformers import BertTokenizer
import torch

class TokenizerProcessor:
    def __init__(self, tokenizer_name='bert-base-uncased'):
        self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name)

    """def tokenize_and_encode(self, input_texts, output_texts, max_length=100):
        encoded = self.tokenizer.batch_encode_plus(
            text_pair=list(zip(input_texts, output_texts)),
            padding='max_length',
            truncation=True,
            max_length=max_length,
            return_attention_mask=True,
            return_tensors='pt'
        )
        return encoded"""
    
    def encode(self,input_texts, output_texts, max_length=512):
        return self.tokenizer.encode_plus(
            text_pair=list(zip(input_texts, output_texts)),
            padding='max_length',
            truncation=True,  # Token dizisini kısaltır
            max_length=max_length,
            return_tensors='pt'
        )

    """paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, return_tensors="pt")
not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, return_tensors="pt")

paraphrase_classification_logits = model(**paraphrase)[0]
not_paraphrase_classification_logits = model(**not_paraphrase)[0]"""
    def custom_padding(self, input_ids_list, max_length=100, pad_token_id=0):
        padded_inputs = []
        for ids in input_ids_list:
            if len(ids) < max_length:
                padded_ids = ids + [pad_token_id] * (max_length - len(ids))
            else:
                padded_ids = ids[:max_length]
            padded_inputs.append(padded_ids)
        return padded_inputs

    def pad_and_truncate_pairs(self, input_texts, output_texts, max_length=512):

        #input ve output verilerinin uzunluğunu eşitleme 
        inputs = self.tokenizer(input_texts, padding=False, truncation=False, return_tensors=None)
        outputs = self.tokenizer(output_texts, padding=False, truncation=False, return_tensors=None)
        
        input_ids = self.custom_padding(inputs['input_ids'], max_length, self.tokenizer.pad_token_id)
        output_ids = self.custom_padding(outputs['input_ids'], max_length, self.tokenizer.pad_token_id)
        
        input_ids_tensor = torch.tensor(input_ids)
        output_ids_tensor = torch.tensor(output_ids)
        
        input_attention_mask = (input_ids_tensor != self.tokenizer.pad_token_id).long()
        output_attention_mask = (output_ids_tensor != self.tokenizer.pad_token_id).long()
        
        return {
            'input_ids': input_ids_tensor,
            'input_attention_mask': input_attention_mask,
            'output_ids': output_ids_tensor,
            'output_attention_mask': output_attention_mask
        }