Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,471 Bytes
54e5741 7a4aa57 976c256 7a4aa57 976c256 54e5741 45ae07f 54e5741 043100e 8418755 54e5741 8418755 54e5741 be0c819 b76929b be0c819 54e5741 8418755 54e5741 45ae07f 54e5741 8418755 b1e9976 54e5741 8418755 54e5741 8418755 54e5741 8418755 54e5741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import time
import gradio as gr
import numpy as np
import spaces
import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
model = AutoModelForZeroShotObjectDetection.from_pretrained(
"omlab/omdet-turbo-swin-tiny-hf"
).to(device)
css = """
.feedback textarea {font-size: 24px !important}
"""
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
def calculate_end_frame_index(source_video_path):
video_info = sv.VideoInfo.from_video_path(source_video_path)
return min(video_info.total_frames, video_info.fps * 5)
def annotate_image(input_image, detections, labels) -> np.ndarray:
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
return output_image
@spaces.GPU
def process_video(
input_video,
confidence_threshold,
classes,
progress=gr.Progress(track_tqdm=True),
):
classes = classes.strip(" ").split(",")
video_info = sv.VideoInfo.from_video_path(input_video)
total = calculate_end_frame_index(input_video)
frame_generator = sv.get_video_frames_generator(source_path=input_video, end=total)
result_file_name = "output.mp4"
result_file_path = os.path.join(os.getcwd(), result_file_name)
all_fps = []
with sv.VideoSink(result_file_path, video_info=video_info) as sink:
for _ in tqdm(range(total), desc="Processing video.."):
try:
frame = next(frame_generator)
except StopIteration:
break
results, fps = query(frame, classes, confidence_threshold)
all_fps.append(fps)
detections = []
detections = sv.Detections(
xyxy=results[0]["boxes"].cpu().detach().numpy(),
confidence=results[0]["scores"].cpu().detach().numpy(),
class_id=np.array(
[
classes.index(results_class)
for results_class in results[0]["classes"]
]
),
data={"class_name": results[0]["classes"]},
)
frame = annotate_image(
input_image=frame,
detections=detections,
labels=results[0]["classes"],
)
sink.write_frame(frame)
avg_fps = np.mean(all_fps)
return result_file_path, gr.Markdown(
f'<h3 style="text-align: center;">Model inference FPS: {avg_fps:.2f}</h3>',
visible=True,
)
def query(frame, classes, confidence_threshold):
image = Image.fromarray(frame)
inputs = processor(images=image, text=classes, return_tensors="pt").to(device)
with torch.no_grad():
start = time.time()
outputs = model(**inputs)
fps = 1 / (time.time() - start)
target_sizes = [frame.shape[:2]]
results = processor.post_process_grounded_object_detection(
outputs=outputs,
classes=classes,
score_threshold=confidence_threshold,
target_sizes=target_sizes,
)
return results, fps
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.Markdown("## Real Time Open Vocabulary Object Detection with Omdet-Turbo")
gr.Markdown(
"""
This is a demo for open vocabulary object detection using OmDet-Turbo.<br>
It runs on ZeroGPU which captures GPU every first time you infer.<br>
This combined with video processing time means that the demo inference time is slower than the model's actual inference time.<br>
The actual model average inference FPS is displayed under the processed video after inference.
"""
)
gr.Markdown(
"Simply upload a video, and write the objects you want to detect! You can also play with confidence threshold or try the examples below. 👇"
)
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
with gr.Column():
output_video = gr.Video(label="Output Video (5s max)")
actual_fps = gr.Markdown("", visible=False)
with gr.Row():
classes = gr.Textbox(
"person, cat, dog",
label="Objects to detect. Change this as you like!",
elem_classes="feedback",
scale=3,
)
conf = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.05,
)
with gr.Row():
submit = gr.Button(variant="primary")
example = gr.Examples(
examples=[
["./football.mp4", 0.3, "person, ball, shoe"],
["./cat.mp4", 0.2, "cat"],
["./safari2.mp4", 0.3, "elephant, giraffe, springbok, zebra"],
],
inputs=[input_video, conf, classes],
outputs=output_video,
)
submit.click(
fn=process_video,
inputs=[input_video, conf, classes],
outputs=[output_video, actual_fps],
)
if __name__ == "__main__":
demo.launch(show_error=True)
|