File size: 5,471 Bytes
54e5741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a4aa57
976c256
7a4aa57
976c256
54e5741
 
 
 
 
 
 
 
 
 
 
 
45ae07f
54e5741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
043100e
 
 
 
8418755
54e5741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8418755
 
54e5741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be0c819
b76929b
 
 
 
be0c819
54e5741
 
8418755
54e5741
 
 
 
 
 
45ae07f
54e5741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8418755
b1e9976
 
 
54e5741
 
8418755
 
 
54e5741
8418755
54e5741
 
 
 
 
8418755
54e5741
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import time

import gradio as gr
import numpy as np
import spaces
import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm

from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
model = AutoModelForZeroShotObjectDetection.from_pretrained(
    "omlab/omdet-turbo-swin-tiny-hf"
).to(device)

css = """
.feedback textarea {font-size: 24px !important}
"""

BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()


def calculate_end_frame_index(source_video_path):
    video_info = sv.VideoInfo.from_video_path(source_video_path)
    return min(video_info.total_frames, video_info.fps * 5)


def annotate_image(input_image, detections, labels) -> np.ndarray:
    output_image = MASK_ANNOTATOR.annotate(input_image, detections)
    output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
    output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
    return output_image


@spaces.GPU
def process_video(
    input_video,
    confidence_threshold,
    classes,
    progress=gr.Progress(track_tqdm=True),
):
    classes = classes.strip(" ").split(",")
    video_info = sv.VideoInfo.from_video_path(input_video)
    total = calculate_end_frame_index(input_video)
    frame_generator = sv.get_video_frames_generator(source_path=input_video, end=total)

    result_file_name = "output.mp4"
    result_file_path = os.path.join(os.getcwd(), result_file_name)
    all_fps = []
    with sv.VideoSink(result_file_path, video_info=video_info) as sink:
        for _ in tqdm(range(total), desc="Processing video.."):
            try:
                frame = next(frame_generator)
            except StopIteration:
                break
            results, fps = query(frame, classes, confidence_threshold)
            all_fps.append(fps)
            detections = []

            detections = sv.Detections(
                xyxy=results[0]["boxes"].cpu().detach().numpy(),
                confidence=results[0]["scores"].cpu().detach().numpy(),
                class_id=np.array(
                    [
                        classes.index(results_class)
                        for results_class in results[0]["classes"]
                    ]
                ),
                data={"class_name": results[0]["classes"]},
            )
            frame = annotate_image(
                input_image=frame,
                detections=detections,
                labels=results[0]["classes"],
            )
            sink.write_frame(frame)

    avg_fps = np.mean(all_fps)
    return result_file_path, gr.Markdown(
        f'<h3 style="text-align: center;">Model inference FPS: {avg_fps:.2f}</h3>',
        visible=True,
    )


def query(frame, classes, confidence_threshold):
    image = Image.fromarray(frame)
    inputs = processor(images=image, text=classes, return_tensors="pt").to(device)
    with torch.no_grad():
        start = time.time()
        outputs = model(**inputs)
        fps = 1 / (time.time() - start)
    target_sizes = [frame.shape[:2]]

    results = processor.post_process_grounded_object_detection(
        outputs=outputs,
        classes=classes,
        score_threshold=confidence_threshold,
        target_sizes=target_sizes,
    )
    return results, fps


with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.Markdown("## Real Time Open Vocabulary Object Detection with Omdet-Turbo")
    gr.Markdown(
        """
        This is a demo for open vocabulary object detection using OmDet-Turbo.<br>
        It runs on ZeroGPU which captures GPU every first time you infer.<br>
        This combined with video processing time means that the demo inference time is slower than the model's actual inference time.<br>
        The actual model average inference FPS is displayed under the processed video after inference.
        """
    )
    gr.Markdown(
        "Simply upload a video, and write the objects you want to detect! You can also play with confidence threshold or try the examples below. 👇"
    )

    with gr.Row():
        with gr.Column():
            input_video = gr.Video(label="Input Video")
        with gr.Column():
            output_video = gr.Video(label="Output Video (5s max)")
            actual_fps = gr.Markdown("", visible=False)
    with gr.Row():
        classes = gr.Textbox(
            "person, cat, dog",
            label="Objects to detect. Change this as you like!",
            elem_classes="feedback",
            scale=3,
        )
        conf = gr.Slider(
            label="Confidence Threshold",
            minimum=0.1,
            maximum=1.0,
            value=0.2,
            step=0.05,
        )

    with gr.Row():
        submit = gr.Button(variant="primary")

    example = gr.Examples(
        examples=[
            ["./football.mp4", 0.3, "person, ball, shoe"],
            ["./cat.mp4", 0.2, "cat"],
            ["./safari2.mp4", 0.3, "elephant, giraffe, springbok, zebra"],
        ],
        inputs=[input_video, conf, classes],
        outputs=output_video,
    )

    submit.click(
        fn=process_video,
        inputs=[input_video, conf, classes],
        outputs=[output_video, actual_fps],
    )

if __name__ == "__main__":
    demo.launch(show_error=True)