Spaces:
Running
Running
Yondika Vio Landa
commited on
Commit
·
15d9901
1
Parent(s):
2fdef2d
update for hf
Browse files- .dockerignore +11 -0
- Dockerfile +11 -0
- app/__init__.py +0 -0
- app/filter_review.py +22 -0
- app/main.py +24 -0
- app/model.py +8 -0
- requirements.txt +5 -0
.dockerignore
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
train/
|
3 |
+
*.csv
|
4 |
+
*.bin
|
5 |
+
*.pt
|
6 |
+
logs/
|
7 |
+
*.ipynb
|
8 |
+
*.md
|
9 |
+
*.safatensors
|
10 |
+
app/finetuned_model/
|
11 |
+
finetuned_model/checkpoint-*
|
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY requirements.txt .
|
6 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
7 |
+
|
8 |
+
COPY . /code
|
9 |
+
|
10 |
+
EXPOSE 7860
|
11 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app/__init__.py
ADDED
File without changes
|
app/filter_review.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
MODEL_FINETUNED = "yondikavl/artour-spam-filter"
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained( MODEL_FINETUNED)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_FINETUNED)
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
def filter_review(text):
|
14 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
15 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
probs = F.softmax(outputs.logits, dim=1)
|
19 |
+
pred = torch.argmax(probs, dim=1).item()
|
20 |
+
label = "spam" if pred == 1 else "non-spam"
|
21 |
+
confidence = probs[0][pred].item()
|
22 |
+
return label, confidence
|
app/main.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from app.filter_review import filter_review
|
4 |
+
import os
|
5 |
+
|
6 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/hf_cache'
|
7 |
+
os.makedirs('/tmp/hf_cache', exist_ok=True)
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
@app.get("/")
|
12 |
+
def read_root():
|
13 |
+
return {"message": "Selamat datang di API Filter Ulasan Spam untuk ArTour!"}
|
14 |
+
|
15 |
+
class FilterReviewRequest(BaseModel):
|
16 |
+
text: str
|
17 |
+
|
18 |
+
@app.post("/filter-review")
|
19 |
+
def filter_spam(request: FilterReviewRequest):
|
20 |
+
label, confidence = filter_review(request.text)
|
21 |
+
|
22 |
+
binary_label = 1 if label.lower() == "spam" else 0
|
23 |
+
|
24 |
+
return {"label": binary_label, "confidence": confidence}
|
app/model.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
|
3 |
+
MODEL_NAME = "indobenchmark/indobert-base-p1"
|
4 |
+
MODEL_FINETUNED = "yondikavl/artour-spam-filter"
|
5 |
+
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_FINETUNED)
|
8 |
+
model.eval()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
transformers
|
4 |
+
pydantic
|
5 |
+
https://download.pytorch.org/whl/cpu/torch-2.1.2%2Bcpu-cp310-cp310-linux_x86_64.whl
|