Spaces:
Sleeping
Sleeping
first
Browse files- .github/workflows/deploy.yml +28 -0
- app.py +7 -0
- model.py +32 -0
- requirements.txt +5 -0
.github/workflows/deploy.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Deploy AI Model
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main # ya jo bhi branch tum use kar rahe ho
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
deploy:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- name: Checkout repository
|
14 |
+
uses: actions/checkout@v3
|
15 |
+
|
16 |
+
- name: Set up Python
|
17 |
+
uses: actions/setup-python@v2
|
18 |
+
with:
|
19 |
+
python-version: '3.9' # Ya jo version tum use kar rahe ho
|
20 |
+
|
21 |
+
- name: Install dependencies
|
22 |
+
run: |
|
23 |
+
python -m pip install --upgrade pip
|
24 |
+
pip install -r requirements.txt
|
25 |
+
|
26 |
+
- name: Run the model deployment script
|
27 |
+
run: |
|
28 |
+
python model.py # Tumhare model code ko run karo
|
app.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from model import prediction
|
3 |
+
|
4 |
+
def predict(text):
|
5 |
+
return prediction(text)
|
6 |
+
|
7 |
+
gr.Interface(fn=predict, inputs="text", outputs="text").launch()
|
model.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
3 |
+
|
4 |
+
def prediction(file_paths,uploaded_text):
|
5 |
+
sentences = []
|
6 |
+
for file_path in file_paths:
|
7 |
+
with open(file_path, 'r') as file:
|
8 |
+
text = file.read()
|
9 |
+
sentences.append(text)
|
10 |
+
|
11 |
+
sentences.append(uploaded_text)
|
12 |
+
|
13 |
+
# Load the pre-trained BERT-based model
|
14 |
+
model_name = 'sentence-transformers/bert-base-nli-mean-tokens'
|
15 |
+
model = SentenceTransformer(model_name)
|
16 |
+
|
17 |
+
# Use the model to encode the sentences
|
18 |
+
sentence_embeddings = model.encode(sentences)
|
19 |
+
|
20 |
+
# Calculate cosine similarity between the uploaded text and the rest of the sentence embeddings
|
21 |
+
query_embedding = sentence_embeddings[-1] # Uploaded text embedding
|
22 |
+
candidate_embeddings = sentence_embeddings[:-1] # Embeddings of other files
|
23 |
+
cosine_similarities = cosine_similarity([query_embedding], candidate_embeddings)[0]
|
24 |
+
|
25 |
+
# Combine the candidate sentences with their corresponding cosine similarities
|
26 |
+
predictions = list(zip(file_paths, cosine_similarities))
|
27 |
+
|
28 |
+
# Sort the predictions based on cosine similarity (highest to lowest)
|
29 |
+
predictions.sort(key=lambda x: x[1], reverse=True)
|
30 |
+
|
31 |
+
return predictions
|
32 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.47.1
|
2 |
+
torch==2.5.1
|
3 |
+
sentence-transformers==3.3.1
|
4 |
+
scikit-learn==1.6.0
|
5 |
+
gradio==4.26.0
|