yogesh69 commited on
Commit
ba88edb
·
verified ·
1 Parent(s): 5fd4949

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -69
app.py CHANGED
@@ -278,36 +278,37 @@ def upload_file(file_obj):
278
  return list_file_path
279
 
280
 
281
-
282
-
283
  def demo():
284
  with gr.Blocks(theme="base") as demo:
285
  vector_db = gr.State()
286
  qa_chain = gr.State()
287
  collection_name = gr.State()
288
-
289
- gr.Markdown(
290
- """<center><h2>BookMyDarshan: Your Personalized Spiritual Assistant</h2></center>
291
- <h3>Explore Sacred Texts and Enhance Your Spiritual Journey</h3>""")
292
-
293
- gr.Markdown(
294
- """<b>About BookMyDarshan.in:</b> We are dedicated to providing pilgrims with exceptional temple darshan experiences.
295
- Our platform offers a comprehensive suite of spiritual and religious services, tailored to meet your devotional needs.<br><br>
296
- <b>Note:</b> This spiritual assistant uses state-of-the-art AI to help you explore and understand your uploaded spiritual documents.
297
- Combining technology with tradition, this tool assists in deepening your connection with your faith.<br>"""
298
- )
299
-
300
- with gr.Tab("Step 1: Upload PDF"):
301
- document = gr.Files(label="Upload your PDF documents", file_count="multiple", file_types=["pdf"], interactive=True)
302
 
303
- with gr.Tab("Step 2: Process Document"):
304
- db_btn = gr.Radio(["ChromaDB"], label="Select Vector Database", value="ChromaDB", info="Choose your vector database")
305
- with gr.Accordion("Advanced Options: Text Splitter", open=False):
306
- slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk Size", info="Adjust chunk size for text splitting")
307
- slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk Overlap", info="Adjust overlap between chunks")
308
- db_progress = gr.Textbox(label="Vector Database Initialization Status", value="None", interactive=False)
309
- generate_db_btn = gr.Button("Generate Vector Database")
310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311
  with gr.Tab("Step 3 - Initialize QA chain"):
312
  with gr.Row():
313
  llm_btn = gr.Radio(list_llm_simple, \
@@ -324,60 +325,51 @@ def demo():
324
  with gr.Row():
325
  qachain_btn = gr.Button("Initialize Question Answering chain")
326
 
327
-
328
-
329
-
330
- with gr.Tab("Step 4: Chatbot"):
331
- chatbot = gr.Chatbot(label="Chat with your PDF", height=300)
332
- with gr.Accordion("Advanced: Document References", open=False):
333
  with gr.Row():
334
- doc_source1 = gr.Textbox(label="Reference 1", lines=2)
335
- source1_page = gr.Number(label="Page", interactive=True)
336
  with gr.Row():
337
- doc_source2 = gr.Textbox(label="Reference 2", lines=2)
338
- source2_page = gr.Number(label="Page", interactive=True)
339
  with gr.Row():
340
- doc_source3 = gr.Textbox(label="Reference 3", lines=2)
341
- source3_page = gr.Number(label="Page", interactive=True)
342
- msg = gr.Textbox(placeholder="Type your question here...", label="Ask a Question", container=True)
343
  with gr.Row():
344
- submit_btn = gr.Button("Submit")
345
- clear_btn = gr.Button("Clear Conversation")
346
-
 
 
347
  # Preprocessing events
348
- generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
349
- qachain_btn.click(
350
- initialize_LLM,
351
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
352
- outputs=[qa_chain, llm_progress]
353
- ).then(
354
- lambda: [None, "", 0, "", 0, "", 0],
355
- inputs=None,
356
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
357
- queue=False
358
- )
359
 
360
  # Chatbot events
361
- msg.submit(
362
- conversation,
363
- inputs=[qa_chain, msg, chatbot],
364
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
365
- queue=False
366
- )
367
- submit_btn.click(
368
- conversation,
369
- inputs=[qa_chain, msg, chatbot],
370
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
371
- queue=False
372
- )
373
- clear_btn.click(
374
- lambda: [None, "", 0, "", 0, "", 0],
375
- inputs=None,
376
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
377
- queue=False
378
- )
379
  demo.queue().launch(debug=True)
380
 
381
 
382
  if __name__ == "__main__":
383
- demo()
 
278
  return list_file_path
279
 
280
 
 
 
281
  def demo():
282
  with gr.Blocks(theme="base") as demo:
283
  vector_db = gr.State()
284
  qa_chain = gr.State()
285
  collection_name = gr.State()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286
 
287
+ gr.Markdown(
288
+ """<center><h2>Book My Darshan Chatbot</center></h2>
289
+ <h3>Plan and book your spiritual journeys effortlessly</h3>""")
 
 
 
 
290
 
291
+ gr.Markdown(
292
+ """<b>Note:</b> This chatbot helps you book darshan services through BookMyDarshan.in. Simply provide the temple name, date, and time, and the chatbot will assist you with the booking process.""")
293
+
294
+ with gr.Tab("Step 1 - Upload PDF"):
295
+ with gr.Row():
296
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
297
+ # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
298
+
299
+ with gr.Tab("Step 2 - Process document"):
300
+ with gr.Row():
301
+ db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
302
+ with gr.Accordion("Advanced options - Document text splitter", open=False):
303
+ with gr.Row():
304
+ slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
305
+ with gr.Row():
306
+ slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
307
+ with gr.Row():
308
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
309
+ with gr.Row():
310
+ db_btn = gr.Button("Generate vector database")
311
+
312
  with gr.Tab("Step 3 - Initialize QA chain"):
313
  with gr.Row():
314
  llm_btn = gr.Radio(list_llm_simple, \
 
325
  with gr.Row():
326
  qachain_btn = gr.Button("Initialize Question Answering chain")
327
 
328
+ with gr.Tab("Step 4 - Chatbot"):
329
+ chatbot = gr.Chatbot(height=300)
330
+ with gr.Accordion("Advanced - Document references", open=False):
 
 
 
331
  with gr.Row():
332
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
333
+ source1_page = gr.Number(label="Page", scale=1)
334
  with gr.Row():
335
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
336
+ source2_page = gr.Number(label="Page", scale=1)
337
  with gr.Row():
338
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
339
+ source3_page = gr.Number(label="Page", scale=1)
 
340
  with gr.Row():
341
+ msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
342
+ with gr.Row():
343
+ submit_btn = gr.Button("Submit message")
344
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
345
+
346
  # Preprocessing events
347
+ #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
348
+ db_btn.click(initialize_database, \
349
+ inputs=[document, slider_chunk_size, slider_chunk_overlap], \
350
+ outputs=[vector_db, collection_name, db_progress])
351
+ qachain_btn.click(initialize_LLM, \
352
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
353
+ outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
354
+ inputs=None, \
355
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
356
+ queue=False)
 
357
 
358
  # Chatbot events
359
+ msg.submit(conversation, \
360
+ inputs=[qa_chain, msg, chatbot], \
361
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
362
+ queue=False)
363
+ submit_btn.click(conversation, \
364
+ inputs=[qa_chain, msg, chatbot], \
365
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
366
+ queue=False)
367
+ clear_btn.click(lambda:[None,"",0,"",0,"",0], \
368
+ inputs=None, \
369
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
370
+ queue=False)
 
 
 
 
 
 
371
  demo.queue().launch(debug=True)
372
 
373
 
374
  if __name__ == "__main__":
375
+ demo()