File size: 7,871 Bytes
4ae5d02
472b521
 
 
 
 
e31acce
4ae5d02
472b521
4ae5d02
 
472b521
 
 
 
 
 
 
 
 
 
 
4ae5d02
 
472b521
 
 
 
 
 
 
4ae5d02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf600c8
472b521
 
cf600c8
 
 
 
 
 
 
 
 
 
 
 
5bb18c5
472b521
 
 
 
5bb18c5
 
472b521
 
 
 
4ae5d02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472b521
 
c1cd0d8
472b521
 
4ae5d02
472b521
4ae5d02
472b521
 
 
 
4ae5d02
 
 
 
 
 
 
 
 
 
 
 
 
472b521
 
bd47b58
472b521
 
cf600c8
472b521
4ae5d02
472b521
4ae5d02
 
 
472b521
 
4ae5d02
cf600c8
 
 
 
 
 
472b521
4ae5d02
472b521
 
 
 
 
 
4ae5d02
cf600c8
472b521
 
 
5f75709
cf600c8
 
 
 
 
 
472b521
 
 
 
4ae5d02
 
 
 
472b521
 
 
 
cf600c8
4ae5d02
cf600c8
 
 
 
591238d
cf600c8
 
 
 
 
 
 
5f75709
cf600c8
 
 
 
 
472b521
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from huggingface_hub import InferenceClient
from gradio_client import Client
import torch
import nltk  # we'll use this to split into sentences
import numpy as np
from transformers import BarkModel, AutoProcessor
nltk.download('punkt')

import gradio as gr
import os 


def _grab_best_device(use_gpu=True):
    if torch.cuda.device_count() > 0 and use_gpu:
        device = "cuda"
    else:
        device = "cpu"
    return device

device = _grab_best_device()

SYST_PROMPT="""You're the storyteller, crafting a short tale for young listeners. Please abide by these guidelines:
- Keep your sentences short, concise and easy to understand.
- There should be only the narrator speaking. If there are dialogues, they should be indirect."""

#story_prompt = "A panda going on an adventure with a caterpillar. This is a story teaching a wonderful life lesson."
story_prompt = "A princess breaks free from a dragon's grip. This evocates women empowerement and freedom."
temperature = 0.9
top_p = 0.6
repetition_penalty = 1.2

TIMEOUT = int(os.environ.get("TIMEOUT", 45))

temperature = 0.9
top_p = 0.6
repetition_penalty = 1.2




# TODO: requirements: accelerate optimum

text_client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.1",
    timeout=TIMEOUT,
)
image_client = Client("https://openskyml-fast-sdxl-stable-diffusion-xl.hf.space/--replicas/ffe2bn2dk/")
image_negative_prompt = "ultrarealistic, soft lighting, 8k, ugly, text, blurry"
image_positive_prompt = ""
image_seed = 6

processor = AutoProcessor.from_pretrained("suno/bark")

def format_speaker_key(key):
    key = key.replace("v2/", "").split("_")
    
    return f"Speaker {key[2]} ({key[0]})"


voice_presets = [key for key in processor.speaker_embeddings.keys() if "v2/en" in key]
voice_presets_dict = {
    format_speaker_key(key): key for key in voice_presets
}

model = BarkModel.from_pretrained("suno/bark", torch_dtype=torch.float16, use_flash_attention_2=True).to(device)
sampling_rate = model.generation_config.sample_rate
silence = np.zeros(int(0.25 * sampling_rate))  # quarter second of silence
voice_preset = "v2/en_speaker_6"

model = model.enable_cpu_offload()
BATCH_SIZE = 32

# enable CPU offload
model.enable_cpu_offload()

# MISTRAL ONLY 
default_system_understand_message = (
    "I understand, I am a Mistral chatbot."
)
system_understand_message = os.environ.get(
    "SYSTEM_UNDERSTAND_MESSAGE", default_system_understand_message
)

# Mistral formatter
def format_prompt(message):
    prompt = (
        "<s>[INST]" + SYST_PROMPT + "[/INST]" + system_understand_message + "</s>"
    )
    prompt += f"[INST] {message} [/INST]"
    return prompt


def generate_story(
    story_prompt,
    temperature=0.9,
    max_new_tokens=1024,
    top_p=0.95,
    repetition_penalty=1.0,):
    
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    
    try:
        output = text_client.text_generation(
                format_prompt(story_prompt),
                **generate_kwargs,
                details=False,
                return_full_text=False,
            )
    except Exception as e:
        if "Too Many Requests" in str(e):
            print("ERROR: Too many requests on mistral client")
            gr.Warning("Unfortunately Mistral is unable to process")
            output = "Unfortuanately I am not able to process your request now, too many people are asking me !"
        elif "Model not loaded on the server" in str(e):
            print("ERROR: Mistral server down")
            gr.Warning("Unfortunately Mistral LLM is unable to process")
            output = "Unfortuanately I am not able to process your request now, I have problem with Mistral!"
        else:
            print("Unhandled Exception: ", str(e))
            gr.Warning("Unfortunately Mistral is unable to process")
            output = "I do not know what happened but I could not understand you."
        return output

    return output


def generate_audio_and_image(story_prompt, voice_preset="Speaker 3 (en)"):


    story = generate_story(story_prompt)
    
    print(story)
    
    model_input = story.replace("\n", " ").strip()
    model_input = nltk.sent_tokenize(model_input)
    
    print("text generated - now calling for image")
    job_img = image_client.submit(
                    story_prompt+image_positive_prompt,	# str in 'parameter_11' Textbox component
                    image_negative_prompt,	# str in 'parameter_12' Textbox component
                    25,
                    7,
                    1024,
                    1024,
                    image_seed,
                    fn_index=0,
    )
    print("image called - now generating audio")
    
    pieces = []
    for i in range(0, len(model_input), BATCH_SIZE):
        inputs = model_input[i:min(i + BATCH_SIZE, len(model_input))]
        
        if len(inputs) != 0:
            inputs = processor(inputs, voice_preset=voice_presets_dict[voice_preset])
            
            speech_output, output_lengths = model.generate(**inputs.to(device), return_output_lengths=True, min_eos_p=0.2)
            
            speech_output = [output[:length].cpu().numpy() for (output,length) in zip(speech_output, output_lengths)]
            
            print(f"{i}-th part generated")
            pieces += [*speech_output, silence.copy()]
            
    print("Calling image")
    try:
        img = job_img.result()
    except Exception as e:
        print("Unhandled Exception: ", str(e))
        gr.Warning("Unfortunately there was an issue when generating the image with SDXL.")
        img = None
    
    return story, (sampling_rate, np.concatenate(pieces)), img




# Gradio blocks demo    
with gr.Blocks() as demo_blocks:
    gr.Markdown("""<h1 align="center">🐶Children story</h1>""")
    gr.HTML("""<h3 style="text-align:center;">Let Mistral tell you a story</h3>""")
    with gr.Group():
      with gr.Row():
        inp_text = gr.Textbox(label="Story prompt", info="Enter text here")
      with gr.Row():
        with gr.Accordion("Advanced settings", open=False):
            voice_preset = gr.Dropdown(
                    voice_presets_dict,
                    value="Speaker 6 (en)", 
                    label="Available speakers", 
                    )

    
    with gr.Row():
        btn = gr.Button("Create a story")
        
    with gr.Row():    
        with gr.Column(scale=1):
            image_output = gr.Image(elem_id="gallery")
    with gr.Row():
        out_audio = gr.Audio(
                streaming=False, autoplay=True) # needed to stream output audio
        out_text = gr.Text()
        btn.click(generate_audio_and_image, [inp_text, voice_preset], [out_text, out_audio, image_output] ) #[out_audio]) #, out_count])
        
    with gr.Row():
        gr.Examples(
        [
            "A panda going on an adventure with a caterpillar. This is a story teaching a wonderful life lesson.",
            "A princess breaks free from a dragon's grip. This evocates women empowerement and freedom.",
            "Tell me about the wonders of the world.",
            ],
        [inp_text],
        [out_text, out_audio, image_output],
        generate_audio_and_image,
        cache_examples=True,
    ) 
    with gr.Row():
        gr.Markdown(
            """
    This Space uses **[Bark](https://huggingface.co/docs/transformers/main/en/model_doc/bark)**, [Mistral-7b-instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) and [Fast SD-XL](https://huggingface.co/spaces/openskyml/fast-sdxl-stable-diffusion-xl)!
    """
        ) 
demo_blocks.queue().launch(debug=True)