File size: 6,620 Bytes
4ae5d02
472b521
 
 
 
 
e31acce
4ae5d02
472b521
4ae5d02
 
 
472b521
 
 
 
 
 
 
 
 
 
 
4ae5d02
 
472b521
 
 
 
 
 
 
4ae5d02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472b521
 
 
 
 
 
 
 
 
 
4ae5d02
472b521
 
 
 
4ae5d02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472b521
 
 
 
 
4ae5d02
472b521
4ae5d02
472b521
 
 
 
4ae5d02
 
 
 
 
 
 
 
 
 
 
 
 
472b521
 
 
 
 
 
 
4ae5d02
472b521
4ae5d02
 
 
472b521
 
4ae5d02
472b521
4ae5d02
 
472b521
4ae5d02
472b521
 
 
 
 
 
4ae5d02
472b521
 
 
 
 
 
 
 
 
 
 
 
 
 
4ae5d02
 
 
 
472b521
 
 
 
4ae5d02
 
 
472b521
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from huggingface_hub import InferenceClient
from gradio_client import Client
import torch
import nltk  # we'll use this to split into sentences
import numpy as np
from transformers import BarkModel, AutoProcessor
nltk.download('punkt')

import gradio as gr
import os 
os.environ["GRADIO_TEMP_DIR"] = "/home/yoach/spaces/tmp"


def _grab_best_device(use_gpu=True):
    if torch.cuda.device_count() > 0 and use_gpu:
        device = "cuda"
    else:
        device = "cpu"
    return device

device = _grab_best_device()

SYST_PROMPT="""You're the storyteller, crafting a short tale for young listeners. Please abide by these guidelines:
- Keep your sentences short, concise and easy to understand.
- There should be only the narrator speaking. If there are dialogues, they should be indirect."""

#story_prompt = "A panda going on an adventure with a caterpillar. This is a story teaching a wonderful life lesson."
story_prompt = "A princess breaks free from a dragon's grip. This evocates women empowerement and freedom."
temperature = 0.9
top_p = 0.6
repetition_penalty = 1.2

TIMEOUT = int(os.environ.get("TIMEOUT", 45))

temperature = 0.9
top_p = 0.6
repetition_penalty = 1.2




# TODO: requirements: accelerate optimum

text_client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.1",
    timeout=TIMEOUT,
)
image_client = Client("https://openskyml-fast-sdxl-stable-diffusion-xl.hf.space/--replicas/ffe2bn2dk/")
image_negative_prompt = "ultrarealistic, soft lighting, 8k, ugly, text, blurry"
image_positive_prompt = ""
image_seed = 9

processor = AutoProcessor.from_pretrained("suno/bark")
model = BarkModel.from_pretrained("suno/bark", torch_dtype=torch.float16).to(device)
sampling_rate = model.generation_config.sample_rate
silence = np.zeros(int(0.25 * sampling_rate))  # quarter second of silence
voice_preset = "v2/en_speaker_6"

# convert to bettertransformer
model = model.to_bettertransformer()
BATCH_SIZE = 16 

# enable CPU offload
model.enable_cpu_offload()

# MISTRAL ONLY 
default_system_understand_message = (
    "I understand, I am a Mistral chatbot."
)
system_understand_message = os.environ.get(
    "SYSTEM_UNDERSTAND_MESSAGE", default_system_understand_message
)

# Mistral formatter
def format_prompt(message):
    prompt = (
        "<s>[INST]" + SYST_PROMPT + "[/INST]" + system_understand_message + "</s>"
    )
    prompt += f"[INST] {message} [/INST]"
    return prompt


def generate_story(
    story_prompt,
    temperature=0.9,
    max_new_tokens=1024,
    top_p=0.95,
    repetition_penalty=1.0,):
    
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    
    try:
        output = text_client.text_generation(
                format_prompt(story_prompt),
                **generate_kwargs,
                details=False,
                return_full_text=False,
            )
    except Exception as e:
        if "Too Many Requests" in str(e):
            print("ERROR: Too many requests on mistral client")
            gr.Warning("Unfortunately Mistral is unable to process")
            output = "Unfortuanately I am not able to process your request now, too many people are asking me !"
        elif "Model not loaded on the server" in str(e):
            print("ERROR: Mistral server down")
            gr.Warning("Unfortunately Mistral LLM is unable to process")
            output = "Unfortuanately I am not able to process your request now, I have problem with Mistral!"
        else:
            print("Unhandled Exception: ", str(e))
            gr.Warning("Unfortunately Mistral is unable to process")
            output = "I do not know what happened but I could not understand you."
        return output

    return output


def generate_audio_and_image(story_prompt, voice_preset=voice_preset):


    story = generate_story(story_prompt)
    
    print(story)
    
    model_input = story.replace("\n", " ").strip()
    model_input = nltk.sent_tokenize(model_input)
    
    print("text generated - now calling for image")
    job_img = image_client.submit(
                    story_prompt+image_positive_prompt,	# str in 'parameter_11' Textbox component
                    image_negative_prompt,	# str in 'parameter_12' Textbox component
                    25,
                    7,
                    1024,
                    1024,
                    image_seed,
                    fn_index=0,
    )
    print("image called - now generating audio")
    
    pieces = []
    for i in range(0, len(model_input), BATCH_SIZE):
        inputs = model_input[BATCH_SIZE*i:min(BATCH_SIZE*(i+1), len(model_input))]
        
        if len(inputs) != 0:
            inputs = processor(inputs, voice_preset=voice_preset)
            
            speech_output, output_lengths = model.generate(**inputs.to(device), return_output_lengths=True, min_eos_p=0.2)
            
            speech_output = [output[:length].cpu().numpy() for (output,length) in zip(speech_output, output_lengths)]
            
            print(f"{i}-th part generated")
            pieces += [*speech_output, silence.copy()]
            
    print("Calling image")
        
    # TODO: if error catch it 
    img = job_img.result()
    
    return story, (sampling_rate, np.concatenate(pieces)), img




# Gradio blocks demo    
with gr.Blocks() as demo_blocks:
    gr.Markdown("""<h1 align="center">🐶Children story</h1>""")
    gr.HTML("""<h3 style="text-align:center;">📢Audio Streaming powered by Gradio (v3.40.0 onwards)🦾! </h3>""")
    with gr.Group():
      with gr.Row():
        inp_text = gr.Textbox(label="Story prompt", info="Enter text here")
        #dd = gr.Dropdown(
        #        speaker_embeddings,
        #        value=None, 
        #        label="Available voice presets", 
        #        info="Defaults to no speaker embeddings!"
        #        )

    
    with gr.Row():
        btn = gr.Button("Create a story")
        
    with gr.Row():    
        with gr.Column(scale=1):
            image_output = gr.Image(elem_id="gallery")
    with gr.Row():
        out_audio = gr.Audio(
                streaming=False, autoplay=True) # needed to stream output audio
        out_text = gr.Text()
        btn.click(generate_audio_and_image, [inp_text], [out_text, out_audio, image_output] ) #[out_audio]) #, out_count])
        


demo_blocks.queue().launch(debug=True)