Spaces:
Runtime error
Runtime error
| """ | |
| ein notation: | |
| b - batch | |
| n - sequence | |
| nt - text sequence | |
| nw - raw wave length | |
| d - dimension | |
| """ | |
| from __future__ import annotations | |
| import torch | |
| from torch import nn | |
| from x_transformers.x_transformers import RotaryEmbedding | |
| from f5_tts.model_new.modules import ( | |
| AdaLayerNorm_Final, | |
| ConvPositionEmbedding, | |
| MMDiTBlock, | |
| TimestepEmbedding, | |
| get_pos_embed_indices, | |
| precompute_freqs_cis, | |
| ) | |
| # text embedding | |
| class TextEmbedding(nn.Module): | |
| def __init__(self, out_dim, text_num_embeds, mask_padding=True): | |
| super().__init__() | |
| self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token | |
| self.mask_padding = mask_padding # mask filler and batch padding tokens or not | |
| self.precompute_max_pos = 1024 | |
| self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False) | |
| def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: # noqa: F722 | |
| text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() | |
| if self.mask_padding: | |
| text_mask = text == 0 | |
| if drop_text: # cfg for text | |
| text = torch.zeros_like(text) | |
| text = self.text_embed(text) # b nt -> b nt d | |
| # sinus pos emb | |
| batch_start = torch.zeros((text.shape[0],), dtype=torch.long) | |
| batch_text_len = text.shape[1] | |
| pos_idx = get_pos_embed_indices(batch_start, batch_text_len, max_pos=self.precompute_max_pos) | |
| text_pos_embed = self.freqs_cis[pos_idx] | |
| text = text + text_pos_embed | |
| if self.mask_padding: | |
| text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0) | |
| return text | |
| # noised input & masked cond audio embedding | |
| class AudioEmbedding(nn.Module): | |
| def __init__(self, in_dim, out_dim): | |
| super().__init__() | |
| self.linear = nn.Linear(2 * in_dim, out_dim) | |
| self.conv_pos_embed = ConvPositionEmbedding(out_dim) | |
| def forward(self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False): # noqa: F722 | |
| if drop_audio_cond: | |
| cond = torch.zeros_like(cond) | |
| x = torch.cat((x, cond), dim=-1) | |
| x = self.linear(x) | |
| x = self.conv_pos_embed(x) + x | |
| return x | |
| # Transformer backbone using MM-DiT blocks | |
| class MMDiT(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| dim, | |
| depth=8, | |
| heads=8, | |
| dim_head=64, | |
| dropout=0.1, | |
| ff_mult=4, | |
| mel_dim=100, | |
| text_num_embeds=256, | |
| text_mask_padding=True, | |
| qk_norm=None, | |
| ): | |
| super().__init__() | |
| self.time_embed = TimestepEmbedding(dim) | |
| self.text_embed = TextEmbedding(dim, text_num_embeds, mask_padding=text_mask_padding) | |
| self.text_cond, self.text_uncond = None, None # text cache | |
| self.audio_embed = AudioEmbedding(mel_dim, dim) | |
| self.rotary_embed = RotaryEmbedding(dim_head) | |
| self.dim = dim | |
| self.depth = depth | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| MMDiTBlock( | |
| dim=dim, | |
| heads=heads, | |
| dim_head=dim_head, | |
| dropout=dropout, | |
| ff_mult=ff_mult, | |
| context_pre_only=i == depth - 1, | |
| qk_norm=qk_norm, | |
| ) | |
| for i in range(depth) | |
| ] | |
| ) | |
| self.norm_out = AdaLayerNorm_Final(dim) # final modulation | |
| self.proj_out = nn.Linear(dim, mel_dim) | |
| self.initialize_weights() | |
| def initialize_weights(self): | |
| # Zero-out AdaLN layers in MMDiT blocks: | |
| for block in self.transformer_blocks: | |
| nn.init.constant_(block.attn_norm_x.linear.weight, 0) | |
| nn.init.constant_(block.attn_norm_x.linear.bias, 0) | |
| nn.init.constant_(block.attn_norm_c.linear.weight, 0) | |
| nn.init.constant_(block.attn_norm_c.linear.bias, 0) | |
| # Zero-out output layers: | |
| nn.init.constant_(self.norm_out.linear.weight, 0) | |
| nn.init.constant_(self.norm_out.linear.bias, 0) | |
| nn.init.constant_(self.proj_out.weight, 0) | |
| nn.init.constant_(self.proj_out.bias, 0) | |
| def get_input_embed( | |
| self, | |
| x, # b n d | |
| cond, # b n d | |
| text, # b nt | |
| drop_audio_cond: bool = False, | |
| drop_text: bool = False, | |
| cache: bool = True, | |
| ): | |
| if cache: | |
| if drop_text: | |
| if self.text_uncond is None: | |
| self.text_uncond = self.text_embed(text, drop_text=True) | |
| c = self.text_uncond | |
| else: | |
| if self.text_cond is None: | |
| self.text_cond = self.text_embed(text, drop_text=False) | |
| c = self.text_cond | |
| else: | |
| c = self.text_embed(text, drop_text=drop_text) | |
| x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond) | |
| return x, c | |
| def clear_cache(self): | |
| self.text_cond, self.text_uncond = None, None | |
| def forward( | |
| self, | |
| x: float["b n d"], # nosied input audio # noqa: F722 | |
| cond: float["b n d"], # masked cond audio # noqa: F722 | |
| text: int["b nt"], # text # noqa: F722 | |
| time: float["b"] | float[""], # time step # noqa: F821 F722 | |
| mask: bool["b n"] | None = None, # noqa: F722 | |
| drop_audio_cond: bool = False, # cfg for cond audio | |
| drop_text: bool = False, # cfg for text | |
| cfg_infer: bool = False, # cfg inference, pack cond & uncond forward | |
| cache: bool = False, | |
| ): | |
| batch = x.shape[0] | |
| if time.ndim == 0: | |
| time = time.repeat(batch) | |
| # t: conditioning (time), c: context (text + masked cond audio), x: noised input audio | |
| t = self.time_embed(time) | |
| if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d | |
| x_cond, c_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache) | |
| x_uncond, c_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache) | |
| x = torch.cat((x_cond, x_uncond), dim=0) | |
| c = torch.cat((c_cond, c_uncond), dim=0) | |
| t = torch.cat((t, t), dim=0) | |
| mask = torch.cat((mask, mask), dim=0) if mask is not None else None | |
| else: | |
| x, c = self.get_input_embed( | |
| x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache | |
| ) | |
| seq_len = x.shape[1] | |
| text_len = text.shape[1] | |
| rope_audio = self.rotary_embed.forward_from_seq_len(seq_len) | |
| rope_text = self.rotary_embed.forward_from_seq_len(text_len) | |
| for block in self.transformer_blocks: | |
| c, x = block(x, c, t, mask=mask, rope=rope_audio, c_rope=rope_text) | |
| x = self.norm_out(x, t) | |
| output = self.proj_out(x) | |
| return output | |