Spaces:
Running
on
Zero
Running
on
Zero
| # Evaluate with Librispeech test-clean, ~3s prompt to generate 4-10s audio (the way of valle/voicebox evaluation) | |
| import argparse | |
| import json | |
| import os | |
| import sys | |
| sys.path.append(os.getcwd()) | |
| import multiprocessing as mp | |
| from importlib.resources import files | |
| import numpy as np | |
| from f5_tts.eval.utils_eval import get_librispeech_test, run_asr_wer, run_sim | |
| rel_path = str(files("f5_tts").joinpath("../../")) | |
| def get_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"]) | |
| parser.add_argument("-l", "--lang", type=str, default="en") | |
| parser.add_argument("-g", "--gen_wav_dir", type=str, required=True) | |
| parser.add_argument("-p", "--librispeech_test_clean_path", type=str, required=True) | |
| parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use") | |
| parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory") | |
| return parser.parse_args() | |
| def main(): | |
| args = get_args() | |
| eval_task = args.eval_task | |
| lang = args.lang | |
| librispeech_test_clean_path = args.librispeech_test_clean_path # test-clean path | |
| gen_wav_dir = args.gen_wav_dir | |
| metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst" | |
| gpus = list(range(args.gpu_nums)) | |
| test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path) | |
| ## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book, | |
| ## leading to a low similarity for the ground truth in some cases. | |
| # test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth | |
| local = args.local | |
| if local: # use local custom checkpoint dir | |
| asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3" | |
| else: | |
| asr_ckpt_dir = "" # auto download to cache dir | |
| wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth" | |
| # -------------------------------------------------------------------------- | |
| full_results = [] | |
| metrics = [] | |
| if eval_task == "wer": | |
| with mp.Pool(processes=len(gpus)) as pool: | |
| args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set] | |
| results = pool.map(run_asr_wer, args) | |
| for r in results: | |
| full_results.extend(r) | |
| elif eval_task == "sim": | |
| with mp.Pool(processes=len(gpus)) as pool: | |
| args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set] | |
| results = pool.map(run_sim, args) | |
| for r in results: | |
| full_results.extend(r) | |
| else: | |
| raise ValueError(f"Unknown metric type: {eval_task}") | |
| result_path = f"{gen_wav_dir}/_{eval_task}_results.jsonl" | |
| with open(result_path, "w") as f: | |
| for line in full_results: | |
| metrics.append(line[eval_task]) | |
| f.write(json.dumps(line, ensure_ascii=False) + "\n") | |
| metric = round(np.mean(metrics), 5) | |
| f.write(f"\n{eval_task.upper()}: {metric}\n") | |
| print(f"\nTotal {len(metrics)} samples") | |
| print(f"{eval_task.upper()}: {metric}") | |
| print(f"{eval_task.upper()} results saved to {result_path}") | |
| if __name__ == "__main__": | |
| main() | |