Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,279 Bytes
407412c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import gradio as gr
import torch
import torchaudio
import numpy as np
from pathlib import Path
import tempfile
# Import the DMOInference class (assuming it's in a file called dmo_inference.py)
from infer import DMOInference
def initialize_model(student_checkpoint, duration_predictor_checkpoint, model_type, device, cuda_device_id):
"""Initialize the DMOSpeech 2 model with given checkpoints."""
try:
model = DMOInference(
student_checkpoint_path=student_checkpoint,
duration_predictor_path=duration_predictor_checkpoint,
device=device,
model_type=model_type,
tokenizer="pinyin",
dataset_name="Emilia_ZH_EN",
cuda_device_id=str(cuda_device_id)
)
return model, "Model initialized successfully!"
except Exception as e:
return None, f"Error initializing model: {str(e)}"
def generate_speech(
model,
generation_mode,
prompt_audio,
prompt_text,
target_text,
# Duration settings
duration_mode,
manual_duration,
dp_softmax_range,
dp_temperature,
# Teacher-student settings
teacher_steps,
teacher_stopping_time,
student_start_step,
# Advanced settings
eta,
cfg_strength,
sway_coefficient,
# Teacher-guided specific
tg_switch_time,
tg_teacher_steps,
tg_student_steps
):
"""Generate speech using the selected mode and parameters."""
if model is None:
return None, "Please initialize the model first!"
if prompt_audio is None:
return None, "Please upload a reference audio!"
if not target_text:
return None, "Please enter target text to generate!"
try:
# Convert prompt_text to None if empty (for ASR)
prompt_text = prompt_text.strip() if prompt_text else None
# Determine duration
if duration_mode == "automatic":
duration = None
else:
duration = int(manual_duration)
# Generate based on selected mode
if generation_mode == "Student-Only (4 steps)":
# Standard DMOSpeech 2 generation
generated_wave = model.generate(
gen_text=target_text,
audio_path=prompt_audio,
prompt_text=prompt_text,
teacher_steps=0, # No teacher guidance
student_start_step=1,
duration=duration,
dp_softmax_range=dp_softmax_range,
temperature=dp_temperature,
eta=eta,
cfg_strength=cfg_strength,
sway_coefficient=sway_coefficient,
verbose=True
)
elif generation_mode == "Teacher-Student Distillation":
# Full teacher-student distillation
generated_wave = model.generate(
gen_text=target_text,
audio_path=prompt_audio,
prompt_text=prompt_text,
teacher_steps=teacher_steps,
teacher_stopping_time=teacher_stopping_time,
student_start_step=student_start_step,
duration=duration,
dp_softmax_range=dp_softmax_range,
temperature=dp_temperature,
eta=eta,
cfg_strength=cfg_strength,
sway_coefficient=sway_coefficient,
verbose=True
)
elif generation_mode == "Teacher-Only":
# Teacher-only generation
generated_wave = model.generate_teacher_only(
gen_text=target_text,
audio_path=prompt_audio,
prompt_text=prompt_text,
teacher_steps=teacher_steps,
duration=duration,
eta=eta,
cfg_strength=cfg_strength,
sway_coefficient=sway_coefficient
)
elif generation_mode == "Teacher-Guided Sampling":
# Implement teacher-guided sampling
# This would require implementing the teacher-guided sampling algorithm
# For now, we'll use the regular generation with specific parameters
total_teacher_steps = tg_teacher_steps
generated_wave = model.generate(
gen_text=target_text,
audio_path=prompt_audio,
prompt_text=prompt_text,
teacher_steps=total_teacher_steps,
teacher_stopping_time=tg_switch_time,
student_start_step=1,
duration=duration,
dp_softmax_range=dp_softmax_range,
temperature=dp_temperature,
eta=eta,
cfg_strength=cfg_strength,
sway_coefficient=sway_coefficient,
verbose=True
)
# Save generated audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
output_path = tmp_file.name
# Convert to tensor and save
if isinstance(generated_wave, np.ndarray):
generated_wave = torch.from_numpy(generated_wave)
if generated_wave.dim() == 1:
generated_wave = generated_wave.unsqueeze(0)
torchaudio.save(output_path, generated_wave, 24000)
return output_path, "Speech generated successfully!"
except Exception as e:
return None, f"Error generating speech: {str(e)}"
def predict_duration_only(
model,
prompt_audio,
prompt_text,
target_text,
dp_softmax_range,
dp_temperature
):
"""Predict duration for the target text."""
if model is None:
return "Please initialize the model first!"
if prompt_audio is None:
return "Please upload a reference audio!"
if not target_text:
return "Please enter target text!"
try:
prompt_text = prompt_text.strip() if prompt_text else None
predicted_duration = model.predict_duration(
pmt_wav_path=prompt_audio,
tar_text=target_text,
pmt_text=prompt_text,
dp_softmax_range=dp_softmax_range,
temperature=dp_temperature
)
return f"Predicted duration: {predicted_duration} frames (~{predicted_duration/100:.2f} seconds)"
except Exception as e:
return f"Error predicting duration: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="DMOSpeech 2: Advanced Zero-Shot TTS") as demo:
gr.Markdown("""
# DMOSpeech 2: Reinforcement Learning for Duration Prediction in Metric-Optimized Speech Synthesis
This demo showcases DMOSpeech 2, which features:
- **Direct metric optimization** for speaker similarity and intelligibility
- **RL-optimized duration prediction** for better speech quality
- **Teacher-guided sampling** for improved diversity
- **Efficient 4-step generation** while maintaining high quality
""")
# Model state
model_state = gr.State(None)
with gr.Tab("Model Setup"):
gr.Markdown("### Initialize Model")
with gr.Row():
student_checkpoint = gr.Textbox(
label="Student Model Checkpoint Path",
placeholder="/path/to/student_checkpoint.pt"
)
duration_checkpoint = gr.Textbox(
label="Duration Predictor Checkpoint Path",
placeholder="/path/to/duration_predictor.pt"
)
with gr.Row():
model_type = gr.Dropdown(
choices=["F5TTS_Base", "E2TTS_Base"],
value="F5TTS_Base",
label="Model Type"
)
device = gr.Dropdown(
choices=["cuda", "cpu"],
value="cuda",
label="Device"
)
cuda_device_id = gr.Number(
value=0,
label="CUDA Device ID",
precision=0
)
init_button = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Initialization Status", interactive=False)
with gr.Tab("Speech Generation"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input Settings")
prompt_audio = gr.Audio(
label="Reference Audio",
type="filepath",
sources=["upload", "microphone"]
)
prompt_text = gr.Textbox(
label="Reference Text (optional - will use ASR if empty)",
placeholder="The text spoken in the reference audio..."
)
target_text = gr.Textbox(
label="Target Text to Generate",
placeholder="Enter the text you want to synthesize...",
lines=3
)
generation_mode = gr.Radio(
choices=[
"Student-Only (4 steps)",
"Teacher-Student Distillation",
"Teacher-Only",
"Teacher-Guided Sampling"
],
value="Student-Only (4 steps)",
label="Generation Mode"
)
with gr.Column(scale=1):
gr.Markdown("### Duration Settings")
duration_mode = gr.Radio(
choices=["automatic", "manual"],
value="automatic",
label="Duration Mode"
)
manual_duration = gr.Slider(
minimum=100,
maximum=3000,
value=500,
step=10,
label="Manual Duration (frames)",
visible=False
)
dp_softmax_range = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Duration Predictor Softmax Range"
)
dp_temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Duration Predictor Temperature (0=argmax)"
)
predict_duration_btn = gr.Button("Predict Duration Only")
duration_output = gr.Textbox(label="Predicted Duration", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Tab("Teacher-Student Settings"):
teacher_steps = gr.Slider(
minimum=0,
maximum=32,
value=16,
step=1,
label="Teacher Steps"
)
teacher_stopping_time = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.07,
step=0.01,
label="Teacher Stopping Time"
)
student_start_step = gr.Slider(
minimum=1,
maximum=4,
value=1,
step=1,
label="Student Start Step"
)
with gr.Tab("Sampling Settings"):
eta = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="Eta (Stochasticity: 0=DDIM, 1=DDPM)"
)
cfg_strength = gr.Slider(
minimum=0.0,
maximum=5.0,
value=2.0,
step=0.1,
label="CFG Strength"
)
sway_coefficient = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=-1.0,
step=0.1,
label="Sway Sampling Coefficient"
)
with gr.Tab("Teacher-Guided Settings"):
tg_switch_time = gr.Slider(
minimum=0.1,
maximum=0.5,
value=0.25,
step=0.05,
label="Switch Time (when to transition to student)"
)
tg_teacher_steps = gr.Slider(
minimum=6,
maximum=20,
value=14,
step=1,
label="Teacher Steps"
)
tg_student_steps = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=1,
label="Student Steps"
)
generate_button = gr.Button("Generate Speech", variant="primary")
with gr.Row():
output_audio = gr.Audio(label="Generated Speech", type="filepath")
generation_status = gr.Textbox(label="Generation Status", interactive=False)
with gr.Tab("Examples & Info"):
gr.Markdown("""
### Usage Tips:
1. **Generation Modes:**
- **Student-Only (4 steps)**: Fastest, uses the distilled model with direct metric optimization
- **Teacher-Student Distillation**: Uses teacher guidance for initial steps
- **Teacher-Only**: Full quality but slower (32 steps)
- **Teacher-Guided Sampling**: Best balance of quality and diversity
2. **Duration Settings:**
- **Automatic**: Uses RL-optimized duration predictor
- **Manual**: Specify exact duration in frames (100 frames β 1 second)
3. **Advanced Parameters:**
- **Eta**: Controls sampling stochasticity (0 = deterministic, 1 = fully stochastic)
- **CFG Strength**: Higher values = stronger adherence to text
- **Sway Coefficient**: Negative values focus on early denoising steps
### Key Features:
- β
5Γ faster than teacher model
- β
Better WER and speaker similarity
- β
RL-optimized duration prediction
- β
Maintains prosodic diversity with teacher-guided sampling
""")
# Event handlers
duration_mode.change(
lambda x: gr.update(visible=(x == "manual")),
inputs=[duration_mode],
outputs=[manual_duration]
)
init_button.click(
lambda sc, dc, mt, d, cid: initialize_model(sc, dc, mt, d, cid),
inputs=[student_checkpoint, duration_checkpoint, model_type, device, cuda_device_id],
outputs=[model_state, init_status]
)
generate_button.click(
generate_speech,
inputs=[
model_state,
generation_mode,
prompt_audio,
prompt_text,
target_text,
duration_mode,
manual_duration,
dp_softmax_range,
dp_temperature,
teacher_steps,
teacher_stopping_time,
student_start_step,
eta,
cfg_strength,
sway_coefficient,
tg_switch_time,
tg_teacher_steps,
tg_student_steps
],
outputs=[output_audio, generation_status]
)
predict_duration_btn.click(
predict_duration_only,
inputs=[
model_state,
prompt_audio,
prompt_text,
target_text,
dp_softmax_range,
dp_temperature
],
outputs=[duration_output]
)
if __name__ == "__main__":
demo.launch(share=True) |