# temporary minimum implementation of LoRA # SD3 doesn't have Conv2d, so we ignore it # TODO commonize with the original/SD3/FLUX implementation # LoRA network module # reference: # https://github.com/microsoft/LoRA/blob/main/loralib/layers.py # https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py import math import os from typing import Dict, List, Optional, Tuple, Type, Union from transformers import CLIPTextModelWithProjection, T5EncoderModel import numpy as np import torch from library.utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) from networks.lora_flux import LoRAModule, LoRAInfModule from library import sd3_models def create_network( multiplier: float, network_dim: Optional[int], network_alpha: Optional[float], vae: sd3_models.SDVAE, text_encoders: List[Union[CLIPTextModelWithProjection, T5EncoderModel]], mmdit, neuron_dropout: Optional[float] = None, **kwargs, ): if network_dim is None: network_dim = 4 # default if network_alpha is None: network_alpha = 1.0 # extract dim/alpha for conv2d, and block dim conv_dim = kwargs.get("conv_dim", None) conv_alpha = kwargs.get("conv_alpha", None) if conv_dim is not None: conv_dim = int(conv_dim) if conv_alpha is None: conv_alpha = 1.0 else: conv_alpha = float(conv_alpha) # attn dim, mlp dim: only for DoubleStreamBlock. SingleStreamBlock is not supported because of combined qkv context_attn_dim = kwargs.get("context_attn_dim", None) context_mlp_dim = kwargs.get("context_mlp_dim", None) context_mod_dim = kwargs.get("context_mod_dim", None) x_attn_dim = kwargs.get("x_attn_dim", None) x_mlp_dim = kwargs.get("x_mlp_dim", None) x_mod_dim = kwargs.get("x_mod_dim", None) if context_attn_dim is not None: context_attn_dim = int(context_attn_dim) if context_mlp_dim is not None: context_mlp_dim = int(context_mlp_dim) if context_mod_dim is not None: context_mod_dim = int(context_mod_dim) if x_attn_dim is not None: x_attn_dim = int(x_attn_dim) if x_mlp_dim is not None: x_mlp_dim = int(x_mlp_dim) if x_mod_dim is not None: x_mod_dim = int(x_mod_dim) type_dims = [context_attn_dim, context_mlp_dim, context_mod_dim, x_attn_dim, x_mlp_dim, x_mod_dim] if all([d is None for d in type_dims]): type_dims = None # emb_dims [context_embedder, t_embedder, x_embedder, y_embedder, final_mod, final_linear] emb_dims = kwargs.get("emb_dims", None) if emb_dims is not None: emb_dims = emb_dims.strip() if emb_dims.startswith("[") and emb_dims.endswith("]"): emb_dims = emb_dims[1:-1] emb_dims = [int(d) for d in emb_dims.split(",")] # is it better to use ast.literal_eval? assert len(emb_dims) == 6, f"invalid emb_dims: {emb_dims}, must be 6 dimensions (context, t, x, y, final_mod, final_linear)" # double/single train blocks def parse_block_selection(selection: str, total_blocks: int) -> List[bool]: """ Parse a block selection string and return a list of booleans. Args: selection (str): A string specifying which blocks to select. total_blocks (int): The total number of blocks available. Returns: List[bool]: A list of booleans indicating which blocks are selected. """ if selection == "all": return [True] * total_blocks if selection == "none" or selection == "": return [False] * total_blocks selected = [False] * total_blocks ranges = selection.split(",") for r in ranges: if "-" in r: start, end = map(str.strip, r.split("-")) start = int(start) end = int(end) assert 0 <= start < total_blocks, f"invalid start index: {start}" assert 0 <= end < total_blocks, f"invalid end index: {end}" assert start <= end, f"invalid range: {start}-{end}" for i in range(start, end + 1): selected[i] = True else: index = int(r) assert 0 <= index < total_blocks, f"invalid index: {index}" selected[index] = True return selected train_block_indices = kwargs.get("train_block_indices", None) if train_block_indices is not None: train_block_indices = parse_block_selection(train_block_indices, 999) # 999 is a dummy number # rank/module dropout rank_dropout = kwargs.get("rank_dropout", None) if rank_dropout is not None: rank_dropout = float(rank_dropout) module_dropout = kwargs.get("module_dropout", None) if module_dropout is not None: module_dropout = float(module_dropout) # split qkv split_qkv = kwargs.get("split_qkv", False) if split_qkv is not None: split_qkv = True if split_qkv == "True" else False # train T5XXL train_t5xxl = kwargs.get("train_t5xxl", False) if train_t5xxl is not None: train_t5xxl = True if train_t5xxl == "True" else False # verbose verbose = kwargs.get("verbose", False) if verbose is not None: verbose = True if verbose == "True" else False # すごく引数が多いな ( ^ω^)・・・ network = LoRANetwork( text_encoders, mmdit, multiplier=multiplier, lora_dim=network_dim, alpha=network_alpha, dropout=neuron_dropout, rank_dropout=rank_dropout, module_dropout=module_dropout, conv_lora_dim=conv_dim, conv_alpha=conv_alpha, split_qkv=split_qkv, train_t5xxl=train_t5xxl, type_dims=type_dims, emb_dims=emb_dims, train_block_indices=train_block_indices, verbose=verbose, ) loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None) loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None) loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None) loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None: network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio) return network # Create network from weights for inference, weights are not loaded here (because can be merged) def create_network_from_weights(multiplier, file, ae, text_encoders, mmdit, weights_sd=None, for_inference=False, **kwargs): # if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True if weights_sd is None: if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file, safe_open weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location="cpu") # get dim/alpha mapping, and train t5xxl modules_dim = {} modules_alpha = {} train_t5xxl = None for key, value in weights_sd.items(): if "." not in key: continue lora_name = key.split(".")[0] if "alpha" in key: modules_alpha[lora_name] = value elif "lora_down" in key: dim = value.size()[0] modules_dim[lora_name] = dim # logger.info(lora_name, value.size(), dim) if train_t5xxl is None or train_t5xxl is False: train_t5xxl = "lora_te3" in lora_name if train_t5xxl is None: train_t5xxl = False split_qkv = False # split_qkv is not needed to care, because state_dict is qkv combined module_class = LoRAInfModule if for_inference else LoRAModule network = LoRANetwork( text_encoders, mmdit, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class, split_qkv=split_qkv, train_t5xxl=train_t5xxl, ) return network, weights_sd class LoRANetwork(torch.nn.Module): SD3_TARGET_REPLACE_MODULE = ["SingleDiTBlock"] TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPSdpaAttention", "CLIPMLP", "T5Attention", "T5DenseGatedActDense"] LORA_PREFIX_SD3 = "lora_unet" # make ComfyUI compatible LORA_PREFIX_TEXT_ENCODER_CLIP_L = "lora_te1" LORA_PREFIX_TEXT_ENCODER_CLIP_G = "lora_te2" LORA_PREFIX_TEXT_ENCODER_T5 = "lora_te3" # make ComfyUI compatible def __init__( self, text_encoders: List[Union[CLIPTextModelWithProjection, T5EncoderModel]], unet: sd3_models.MMDiT, multiplier: float = 1.0, lora_dim: int = 4, alpha: float = 1, dropout: Optional[float] = None, rank_dropout: Optional[float] = None, module_dropout: Optional[float] = None, conv_lora_dim: Optional[int] = None, conv_alpha: Optional[float] = None, module_class: Type[object] = LoRAModule, modules_dim: Optional[Dict[str, int]] = None, modules_alpha: Optional[Dict[str, int]] = None, split_qkv: bool = False, train_t5xxl: bool = False, type_dims: Optional[List[int]] = None, emb_dims: Optional[List[int]] = None, train_block_indices: Optional[List[bool]] = None, verbose: Optional[bool] = False, ) -> None: super().__init__() self.multiplier = multiplier self.lora_dim = lora_dim self.alpha = alpha self.conv_lora_dim = conv_lora_dim self.conv_alpha = conv_alpha self.dropout = dropout self.rank_dropout = rank_dropout self.module_dropout = module_dropout self.split_qkv = split_qkv self.train_t5xxl = train_t5xxl self.type_dims = type_dims self.emb_dims = emb_dims self.train_block_indices = train_block_indices self.loraplus_lr_ratio = None self.loraplus_unet_lr_ratio = None self.loraplus_text_encoder_lr_ratio = None if modules_dim is not None: logger.info(f"create LoRA network from weights") self.emb_dims = [0] * 6 # create emb_dims # verbose = True else: logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") logger.info( f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}" ) # if self.conv_lora_dim is not None: # logger.info( # f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}" # ) qkv_dim = 0 if self.split_qkv: logger.info(f"split qkv for LoRA") qkv_dim = unet.joint_blocks[0].context_block.attn.qkv.weight.size(0) if train_t5xxl: logger.info(f"train T5XXL as well") # create module instances def create_modules( is_mmdit: bool, text_encoder_idx: Optional[int], root_module: torch.nn.Module, target_replace_modules: List[str], filter: Optional[str] = None, default_dim: Optional[int] = None, include_conv2d_if_filter: bool = False, ) -> List[LoRAModule]: prefix = ( self.LORA_PREFIX_SD3 if is_mmdit else [self.LORA_PREFIX_TEXT_ENCODER_CLIP_L, self.LORA_PREFIX_TEXT_ENCODER_CLIP_G, self.LORA_PREFIX_TEXT_ENCODER_T5][ text_encoder_idx ] ) loras = [] skipped = [] for name, module in root_module.named_modules(): if target_replace_modules is None or module.__class__.__name__ in target_replace_modules: if target_replace_modules is None: # dirty hack for all modules module = root_module # search all modules for child_name, child_module in module.named_modules(): is_linear = child_module.__class__.__name__ == "Linear" is_conv2d = child_module.__class__.__name__ == "Conv2d" is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) if is_linear or is_conv2d: lora_name = prefix + "." + (name + "." if name else "") + child_name lora_name = lora_name.replace(".", "_") force_incl_conv2d = False if filter is not None: if not filter in lora_name: continue force_incl_conv2d = include_conv2d_if_filter dim = None alpha = None if modules_dim is not None: # モジュール指定あり if lora_name in modules_dim: dim = modules_dim[lora_name] alpha = modules_alpha[lora_name] else: # 通常、すべて対象とする if is_linear or is_conv2d_1x1: dim = default_dim if default_dim is not None else self.lora_dim alpha = self.alpha if is_mmdit and type_dims is not None: # type_dims = [context_attn_dim, context_mlp_dim, context_mod_dim, x_attn_dim, x_mlp_dim, x_mod_dim] identifier = [ ("context_block", "attn"), ("context_block", "mlp"), ("context_block", "adaLN_modulation"), ("x_block", "attn"), ("x_block", "mlp"), ("x_block", "adaLN_modulation"), ] for i, d in enumerate(type_dims): if d is not None and all([id in lora_name for id in identifier[i]]): dim = d # may be 0 for skip break if is_mmdit and dim and self.train_block_indices is not None and "joint_blocks" in lora_name: # "lora_unet_joint_blocks_0_x_block_attn_proj..." block_index = int(lora_name.split("_")[4]) # bit dirty if self.train_block_indices is not None and not self.train_block_indices[block_index]: dim = 0 elif self.conv_lora_dim is not None: dim = self.conv_lora_dim alpha = self.conv_alpha elif force_incl_conv2d: # x_embedder dim = default_dim if default_dim is not None else self.lora_dim alpha = self.alpha if dim is None or dim == 0: # skipした情報を出力 if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None): skipped.append(lora_name) continue # qkv split split_dims = None if is_mmdit and split_qkv: if "joint_blocks" in lora_name and "qkv" in lora_name: split_dims = [qkv_dim // 3] * 3 lora = module_class( lora_name, child_module, self.multiplier, dim, alpha, dropout=dropout, rank_dropout=rank_dropout, module_dropout=module_dropout, split_dims=split_dims, ) loras.append(lora) if target_replace_modules is None: break # all modules are searched return loras, skipped # create LoRA for text encoder # 毎回すべてのモジュールを作るのは無駄なので要検討 self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = [] skipped_te = [] for i, text_encoder in enumerate(text_encoders): index = i if not train_t5xxl and index >= 2: # 0: CLIP-L, 1: CLIP-G, 2: T5XXL, so we skip T5XXL if train_t5xxl is False break logger.info(f"create LoRA for Text Encoder {index+1}:") text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.") self.text_encoder_loras.extend(text_encoder_loras) skipped_te += skipped # create LoRA for U-Net self.unet_loras: List[Union[LoRAModule, LoRAInfModule]] self.unet_loras, skipped_un = create_modules(True, None, unet, LoRANetwork.SD3_TARGET_REPLACE_MODULE) # emb_dims [context_embedder, t_embedder, x_embedder, y_embedder, final_mod, final_linear] if self.emb_dims: for filter, in_dim in zip( [ "context_embedder", "_t_embedder", # don't use "t_embedder" because it's used in "context_embedder" "x_embedder", "y_embedder", "final_layer_adaLN_modulation", "final_layer_linear", ], self.emb_dims, ): # x_embedder is conv2d, so we need to include it loras, _ = create_modules( True, None, unet, None, filter=filter, default_dim=in_dim, include_conv2d_if_filter=filter == "x_embedder" ) # if len(loras) > 0: # logger.info(f"create LoRA for {filter}: {len(loras)} modules.") self.unet_loras.extend(loras) logger.info(f"create LoRA for SD3 MMDiT: {len(self.unet_loras)} modules.") if verbose: for lora in self.unet_loras: logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}") skipped = skipped_te + skipped_un if verbose and len(skipped) > 0: logger.warning( f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:" ) for name in skipped: logger.info(f"\t{name}") # assertion names = set() for lora in self.text_encoder_loras + self.unet_loras: assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" names.add(lora.lora_name) def set_multiplier(self, multiplier): self.multiplier = multiplier for lora in self.text_encoder_loras + self.unet_loras: lora.multiplier = self.multiplier def set_enabled(self, is_enabled): for lora in self.text_encoder_loras + self.unet_loras: lora.enabled = is_enabled def load_weights(self, file): if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location="cpu") info = self.load_state_dict(weights_sd, False) return info def load_state_dict(self, state_dict, strict=True): # override to convert original weight to split qkv if not self.split_qkv: return super().load_state_dict(state_dict, strict) # split qkv for key in list(state_dict.keys()): if not ("joint_blocks" in key and "qkv" in key): continue weight = state_dict[key] lora_name = key.split(".")[0] if "lora_down" in key and "weight" in key: # dense weight (rank*3, in_dim) split_weight = torch.chunk(weight, 3, dim=0) for i, split_w in enumerate(split_weight): state_dict[f"{lora_name}.lora_down.{i}.weight"] = split_w del state_dict[key] # print(f"split {key}: {weight.shape} to {[w.shape for w in split_weight]}") elif "lora_up" in key and "weight" in key: # sparse weight (out_dim=sum(split_dims), rank*3) rank = weight.size(1) // 3 i = 0 split_dim = weight.shape[0] // 3 for j in range(3): state_dict[f"{lora_name}.lora_up.{j}.weight"] = weight[i : i + split_dim, j * rank : (j + 1) * rank] i += split_dim del state_dict[key] # alpha is unchanged return super().load_state_dict(state_dict, strict) def state_dict(self, destination=None, prefix="", keep_vars=False): if not self.split_qkv: return super().state_dict(destination, prefix, keep_vars) # merge qkv state_dict = super().state_dict(destination, prefix, keep_vars) new_state_dict = {} for key in list(state_dict.keys()): if not ("joint_blocks" in key and "qkv" in key): new_state_dict[key] = state_dict[key] continue if key not in state_dict: continue # already merged lora_name = key.split(".")[0] # (rank, in_dim) * 3 down_weights = [state_dict.pop(f"{lora_name}.lora_down.{i}.weight") for i in range(3)] # (split dim, rank) * 3 up_weights = [state_dict.pop(f"{lora_name}.lora_up.{i}.weight") for i in range(3)] alpha = state_dict.pop(f"{lora_name}.alpha") # merge down weight down_weight = torch.cat(down_weights, dim=0) # (rank, split_dim) * 3 -> (rank*3, sum of split_dim) # merge up weight (sum of split_dim, rank*3) split_dim, rank = up_weights[0].size() qkv_dim = split_dim * 3 up_weight = torch.zeros((qkv_dim, down_weight.size(0)), device=down_weight.device, dtype=down_weight.dtype) i = 0 for j in range(3): up_weight[i : i + split_dim, j * rank : (j + 1) * rank] = up_weights[j] i += split_dim new_state_dict[f"{lora_name}.lora_down.weight"] = down_weight new_state_dict[f"{lora_name}.lora_up.weight"] = up_weight new_state_dict[f"{lora_name}.alpha"] = alpha # print( # f"merged {lora_name}: {lora_name}, {[w.shape for w in down_weights]}, {[w.shape for w in up_weights]} to {down_weight.shape}, {up_weight.shape}" # ) print(f"new key: {lora_name}.lora_down.weight, {lora_name}.lora_up.weight, {lora_name}.alpha") return new_state_dict def apply_to(self, text_encoders, mmdit, apply_text_encoder=True, apply_unet=True): if apply_text_encoder: logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules") else: self.text_encoder_loras = [] if apply_unet: logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules") else: self.unet_loras = [] for lora in self.text_encoder_loras + self.unet_loras: lora.apply_to() self.add_module(lora.lora_name, lora) # マージできるかどうかを返す def is_mergeable(self): return True # TODO refactor to common function with apply_to def merge_to(self, text_encoders, mmdit, weights_sd, dtype=None, device=None): apply_text_encoder = apply_unet = False for key in weights_sd.keys(): if ( key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP_L) or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP_G) or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5) ): apply_text_encoder = True elif key.startswith(LoRANetwork.LORA_PREFIX_SD3): apply_unet = True if apply_text_encoder: logger.info("enable LoRA for text encoder") else: self.text_encoder_loras = [] if apply_unet: logger.info("enable LoRA for U-Net") else: self.unet_loras = [] for lora in self.text_encoder_loras + self.unet_loras: sd_for_lora = {} for key in weights_sd.keys(): if key.startswith(lora.lora_name): sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] lora.merge_to(sd_for_lora, dtype, device) logger.info(f"weights are merged") def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio): self.loraplus_lr_ratio = loraplus_lr_ratio self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}") logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}") def prepare_optimizer_params_with_multiple_te_lrs(self, text_encoder_lr, unet_lr, default_lr): # make sure text_encoder_lr as list of three elements # if float, use the same value for all three if text_encoder_lr is None or (isinstance(text_encoder_lr, list) and len(text_encoder_lr) == 0): text_encoder_lr = [default_lr, default_lr, default_lr] elif isinstance(text_encoder_lr, float) or isinstance(text_encoder_lr, int): text_encoder_lr = [float(text_encoder_lr), float(text_encoder_lr), float(text_encoder_lr)] elif len(text_encoder_lr) == 1: text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[0], text_encoder_lr[0]] elif len(text_encoder_lr) == 2: text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[1], text_encoder_lr[1]] self.requires_grad_(True) all_params = [] lr_descriptions = [] def assemble_params(loras, lr, loraplus_ratio): param_groups = {"lora": {}, "plus": {}} for lora in loras: for name, param in lora.named_parameters(): if loraplus_ratio is not None and "lora_up" in name: param_groups["plus"][f"{lora.lora_name}.{name}"] = param else: param_groups["lora"][f"{lora.lora_name}.{name}"] = param params = [] descriptions = [] for key in param_groups.keys(): param_data = {"params": param_groups[key].values()} if len(param_data["params"]) == 0: continue if lr is not None: if key == "plus": param_data["lr"] = lr * loraplus_ratio else: param_data["lr"] = lr if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None: logger.info("NO LR skipping!") continue params.append(param_data) descriptions.append("plus" if key == "plus" else "") return params, descriptions if self.text_encoder_loras: loraplus_lr_ratio = self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio # split text encoder loras for te1 and te3 te1_loras = [ lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP_L) ] te2_loras = [ lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP_G) ] te3_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_T5)] if len(te1_loras) > 0: logger.info(f"Text Encoder 1 (CLIP-L): {len(te1_loras)} modules, LR {text_encoder_lr[0]}") params, descriptions = assemble_params(te1_loras, text_encoder_lr[0], loraplus_lr_ratio) all_params.extend(params) lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions]) if len(te2_loras) > 0: logger.info(f"Text Encoder 2 (CLIP-G): {len(te2_loras)} modules, LR {text_encoder_lr[1]}") params, descriptions = assemble_params(te2_loras, text_encoder_lr[1], loraplus_lr_ratio) all_params.extend(params) lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions]) if len(te3_loras) > 0: logger.info(f"Text Encoder 3 (T5XXL): {len(te3_loras)} modules, LR {text_encoder_lr[2]}") params, descriptions = assemble_params(te3_loras, text_encoder_lr[2], loraplus_lr_ratio) all_params.extend(params) lr_descriptions.extend(["textencoder 3 " + (" " + d if d else "") for d in descriptions]) if self.unet_loras: params, descriptions = assemble_params( self.unet_loras, unet_lr if unet_lr is not None else default_lr, self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio, ) all_params.extend(params) lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions]) return all_params, lr_descriptions def enable_gradient_checkpointing(self): # not supported pass def prepare_grad_etc(self, text_encoder, unet): self.requires_grad_(True) def on_epoch_start(self, text_encoder, unet): self.train() def get_trainable_params(self): return self.parameters() def save_weights(self, file, dtype, metadata): if metadata is not None and len(metadata) == 0: metadata = None state_dict = self.state_dict() if dtype is not None: for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(dtype) state_dict[key] = v if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import save_file from library import train_util # Precalculate model hashes to save time on indexing if metadata is None: metadata = {} model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) metadata["sshs_model_hash"] = model_hash metadata["sshs_legacy_hash"] = legacy_hash save_file(state_dict, file, metadata) else: torch.save(state_dict, file) def backup_weights(self): # 重みのバックアップを行う loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras for lora in loras: org_module = lora.org_module_ref[0] if not hasattr(org_module, "_lora_org_weight"): sd = org_module.state_dict() org_module._lora_org_weight = sd["weight"].detach().clone() org_module._lora_restored = True def restore_weights(self): # 重みのリストアを行う loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras for lora in loras: org_module = lora.org_module_ref[0] if not org_module._lora_restored: sd = org_module.state_dict() sd["weight"] = org_module._lora_org_weight org_module.load_state_dict(sd) org_module._lora_restored = True def pre_calculation(self): # 事前計算を行う loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras for lora in loras: org_module = lora.org_module_ref[0] sd = org_module.state_dict() org_weight = sd["weight"] lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype) sd["weight"] = org_weight + lora_weight assert sd["weight"].shape == org_weight.shape org_module.load_state_dict(sd) org_module._lora_restored = False lora.enabled = False def apply_max_norm_regularization(self, max_norm_value, device): downkeys = [] upkeys = [] alphakeys = [] norms = [] keys_scaled = 0 state_dict = self.state_dict() for key in state_dict.keys(): if "lora_down" in key and "weight" in key: downkeys.append(key) upkeys.append(key.replace("lora_down", "lora_up")) alphakeys.append(key.replace("lora_down.weight", "alpha")) for i in range(len(downkeys)): down = state_dict[downkeys[i]].to(device) up = state_dict[upkeys[i]].to(device) alpha = state_dict[alphakeys[i]].to(device) dim = down.shape[0] scale = alpha / dim if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) else: updown = up @ down updown *= scale norm = updown.norm().clamp(min=max_norm_value / 2) desired = torch.clamp(norm, max=max_norm_value) ratio = desired.cpu() / norm.cpu() sqrt_ratio = ratio**0.5 if ratio != 1: keys_scaled += 1 state_dict[upkeys[i]] *= sqrt_ratio state_dict[downkeys[i]] *= sqrt_ratio scalednorm = updown.norm() * ratio norms.append(scalednorm.item()) return keys_scaled, sum(norms) / len(norms), max(norms)