import os from typing import Any, List, Optional, Tuple, Union import numpy as np import torch from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection from library.strategy_base import TokenizeStrategy, TextEncodingStrategy, TextEncoderOutputsCachingStrategy from library.utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) TOKENIZER1_PATH = "openai/clip-vit-large-patch14" TOKENIZER2_PATH = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" class SdxlTokenizeStrategy(TokenizeStrategy): def __init__(self, max_length: Optional[int], tokenizer_cache_dir: Optional[str] = None) -> None: self.tokenizer1 = self._load_tokenizer(CLIPTokenizer, TOKENIZER1_PATH, tokenizer_cache_dir=tokenizer_cache_dir) self.tokenizer2 = self._load_tokenizer(CLIPTokenizer, TOKENIZER2_PATH, tokenizer_cache_dir=tokenizer_cache_dir) self.tokenizer2.pad_token_id = 0 # use 0 as pad token for tokenizer2 if max_length is None: self.max_length = self.tokenizer1.model_max_length else: self.max_length = max_length + 2 def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]: text = [text] if isinstance(text, str) else text return ( torch.stack([self._get_input_ids(self.tokenizer1, t, self.max_length) for t in text], dim=0), torch.stack([self._get_input_ids(self.tokenizer2, t, self.max_length) for t in text], dim=0), ) def tokenize_with_weights(self, text: str | List[str]) -> Tuple[List[torch.Tensor]]: text = [text] if isinstance(text, str) else text tokens1_list, tokens2_list = [], [] weights1_list, weights2_list = [], [] for t in text: tokens1, weights1 = self._get_input_ids(self.tokenizer1, t, self.max_length, weighted=True) tokens2, weights2 = self._get_input_ids(self.tokenizer2, t, self.max_length, weighted=True) tokens1_list.append(tokens1) tokens2_list.append(tokens2) weights1_list.append(weights1) weights2_list.append(weights2) return [torch.stack(tokens1_list, dim=0), torch.stack(tokens2_list, dim=0)], [ torch.stack(weights1_list, dim=0), torch.stack(weights2_list, dim=0), ] class SdxlTextEncodingStrategy(TextEncodingStrategy): def __init__(self) -> None: pass def _pool_workaround( self, text_encoder: CLIPTextModelWithProjection, last_hidden_state: torch.Tensor, input_ids: torch.Tensor, eos_token_id: int ): r""" workaround for CLIP's pooling bug: it returns the hidden states for the max token id as the pooled output instead of the hidden states for the EOS token If we use Textual Inversion, we need to use the hidden states for the EOS token as the pooled output Original code from CLIP's pooling function: \# text_embeds.shape = [batch_size, sequence_length, transformer.width] \# take features from the eot embedding (eot_token is the highest number in each sequence) \# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), ] """ # input_ids: b*n,77 # find index for EOS token # Following code is not working if one of the input_ids has multiple EOS tokens (very odd case) # eos_token_index = torch.where(input_ids == eos_token_id)[1] # eos_token_index = eos_token_index.to(device=last_hidden_state.device) # Create a mask where the EOS tokens are eos_token_mask = (input_ids == eos_token_id).int() # Use argmax to find the last index of the EOS token for each element in the batch eos_token_index = torch.argmax(eos_token_mask, dim=1) # this will be 0 if there is no EOS token, it's fine eos_token_index = eos_token_index.to(device=last_hidden_state.device) # get hidden states for EOS token pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), eos_token_index ] # apply projection: projection may be of different dtype than last_hidden_state pooled_output = text_encoder.text_projection(pooled_output.to(text_encoder.text_projection.weight.dtype)) pooled_output = pooled_output.to(last_hidden_state.dtype) return pooled_output def _get_hidden_states_sdxl( self, input_ids1: torch.Tensor, input_ids2: torch.Tensor, tokenizer1: CLIPTokenizer, tokenizer2: CLIPTokenizer, text_encoder1: Union[CLIPTextModel, torch.nn.Module], text_encoder2: Union[CLIPTextModelWithProjection, torch.nn.Module], unwrapped_text_encoder2: Optional[CLIPTextModelWithProjection] = None, ): # input_ids: b,n,77 -> b*n, 77 b_size = input_ids1.size()[0] if input_ids1.size()[1] == 1: max_token_length = None else: max_token_length = input_ids1.size()[1] * input_ids1.size()[2] input_ids1 = input_ids1.reshape((-1, tokenizer1.model_max_length)) # batch_size*n, 77 input_ids2 = input_ids2.reshape((-1, tokenizer2.model_max_length)) # batch_size*n, 77 input_ids1 = input_ids1.to(text_encoder1.device) input_ids2 = input_ids2.to(text_encoder2.device) # text_encoder1 enc_out = text_encoder1(input_ids1, output_hidden_states=True, return_dict=True) hidden_states1 = enc_out["hidden_states"][11] # text_encoder2 enc_out = text_encoder2(input_ids2, output_hidden_states=True, return_dict=True) hidden_states2 = enc_out["hidden_states"][-2] # penuultimate layer # pool2 = enc_out["text_embeds"] unwrapped_text_encoder2 = unwrapped_text_encoder2 or text_encoder2 pool2 = self._pool_workaround(unwrapped_text_encoder2, enc_out["last_hidden_state"], input_ids2, tokenizer2.eos_token_id) # b*n, 77, 768 or 1280 -> b, n*77, 768 or 1280 n_size = 1 if max_token_length is None else max_token_length // 75 hidden_states1 = hidden_states1.reshape((b_size, -1, hidden_states1.shape[-1])) hidden_states2 = hidden_states2.reshape((b_size, -1, hidden_states2.shape[-1])) if max_token_length is not None: # bs*3, 77, 768 or 1024 # encoder1: ... の三連を ... へ戻す states_list = [hidden_states1[:, 0].unsqueeze(1)] # for i in range(1, max_token_length, tokenizer1.model_max_length): states_list.append(hidden_states1[:, i : i + tokenizer1.model_max_length - 2]) # の後から の前まで states_list.append(hidden_states1[:, -1].unsqueeze(1)) # hidden_states1 = torch.cat(states_list, dim=1) # v2: ... ... の三連を ... ... へ戻す 正直この実装でいいのかわからん states_list = [hidden_states2[:, 0].unsqueeze(1)] # for i in range(1, max_token_length, tokenizer2.model_max_length): chunk = hidden_states2[:, i : i + tokenizer2.model_max_length - 2] # の後から 最後の前まで # this causes an error: # RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation # if i > 1: # for j in range(len(chunk)): # batch_size # if input_ids2[n_index + j * n_size, 1] == tokenizer2.eos_token_id: # 空、つまり ...のパターン # chunk[j, 0] = chunk[j, 1] # 次の の値をコピーする states_list.append(chunk) # の後から の前まで states_list.append(hidden_states2[:, -1].unsqueeze(1)) # のどちらか hidden_states2 = torch.cat(states_list, dim=1) # pool はnの最初のものを使う pool2 = pool2[::n_size] return hidden_states1, hidden_states2, pool2 def encode_tokens( self, tokenize_strategy: TokenizeStrategy, models: List[Any], tokens: List[torch.Tensor] ) -> List[torch.Tensor]: """ Args: tokenize_strategy: TokenizeStrategy models: List of models, [text_encoder1, text_encoder2, unwrapped text_encoder2 (optional)]. If text_encoder2 is wrapped by accelerate, unwrapped_text_encoder2 is required tokens: List of tokens, for text_encoder1 and text_encoder2 """ if len(models) == 2: text_encoder1, text_encoder2 = models unwrapped_text_encoder2 = None else: text_encoder1, text_encoder2, unwrapped_text_encoder2 = models tokens1, tokens2 = tokens sdxl_tokenize_strategy = tokenize_strategy # type: SdxlTokenizeStrategy tokenizer1, tokenizer2 = sdxl_tokenize_strategy.tokenizer1, sdxl_tokenize_strategy.tokenizer2 hidden_states1, hidden_states2, pool2 = self._get_hidden_states_sdxl( tokens1, tokens2, tokenizer1, tokenizer2, text_encoder1, text_encoder2, unwrapped_text_encoder2 ) return [hidden_states1, hidden_states2, pool2] def encode_tokens_with_weights( self, tokenize_strategy: TokenizeStrategy, models: List[Any], tokens_list: List[torch.Tensor], weights_list: List[torch.Tensor], ) -> List[torch.Tensor]: hidden_states1, hidden_states2, pool2 = self.encode_tokens(tokenize_strategy, models, tokens_list) weights_list = [weights.to(hidden_states1.device) for weights in weights_list] # apply weights if weights_list[0].shape[1] == 1: # no max_token_length # weights: ((b, 1, 77), (b, 1, 77)), hidden_states: (b, 77, 768), (b, 77, 768) hidden_states1 = hidden_states1 * weights_list[0].squeeze(1).unsqueeze(2) hidden_states2 = hidden_states2 * weights_list[1].squeeze(1).unsqueeze(2) else: # weights: ((b, n, 77), (b, n, 77)), hidden_states: (b, n*75+2, 768), (b, n*75+2, 768) for weight, hidden_states in zip(weights_list, [hidden_states1, hidden_states2]): for i in range(weight.shape[1]): hidden_states[:, i * 75 + 1 : i * 75 + 76] = hidden_states[:, i * 75 + 1 : i * 75 + 76] * weight[ :, i, 1:-1 ].unsqueeze(-1) return [hidden_states1, hidden_states2, pool2] class SdxlTextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy): SDXL_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_te_outputs.npz" def __init__( self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool, is_partial: bool = False, is_weighted: bool = False, ) -> None: super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial, is_weighted) def get_outputs_npz_path(self, image_abs_path: str) -> str: return os.path.splitext(image_abs_path)[0] + SdxlTextEncoderOutputsCachingStrategy.SDXL_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX def is_disk_cached_outputs_expected(self, npz_path: str): if not self.cache_to_disk: return False if not os.path.exists(npz_path): return False if self.skip_disk_cache_validity_check: return True try: npz = np.load(npz_path) if "hidden_state1" not in npz or "hidden_state2" not in npz or "pool2" not in npz: return False except Exception as e: logger.error(f"Error loading file: {npz_path}") raise e return True def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]: data = np.load(npz_path) hidden_state1 = data["hidden_state1"] hidden_state2 = data["hidden_state2"] pool2 = data["pool2"] return [hidden_state1, hidden_state2, pool2] def cache_batch_outputs( self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List ): sdxl_text_encoding_strategy = text_encoding_strategy # type: SdxlTextEncodingStrategy captions = [info.caption for info in infos] if self.is_weighted: tokens_list, weights_list = tokenize_strategy.tokenize_with_weights(captions) with torch.no_grad(): hidden_state1, hidden_state2, pool2 = sdxl_text_encoding_strategy.encode_tokens_with_weights( tokenize_strategy, models, tokens_list, weights_list ) else: tokens1, tokens2 = tokenize_strategy.tokenize(captions) with torch.no_grad(): hidden_state1, hidden_state2, pool2 = sdxl_text_encoding_strategy.encode_tokens( tokenize_strategy, models, [tokens1, tokens2] ) if hidden_state1.dtype == torch.bfloat16: hidden_state1 = hidden_state1.float() if hidden_state2.dtype == torch.bfloat16: hidden_state2 = hidden_state2.float() if pool2.dtype == torch.bfloat16: pool2 = pool2.float() hidden_state1 = hidden_state1.cpu().numpy() hidden_state2 = hidden_state2.cpu().numpy() pool2 = pool2.cpu().numpy() for i, info in enumerate(infos): hidden_state1_i = hidden_state1[i] hidden_state2_i = hidden_state2[i] pool2_i = pool2[i] if self.cache_to_disk: np.savez( info.text_encoder_outputs_npz, hidden_state1=hidden_state1_i, hidden_state2=hidden_state2_i, pool2=pool2_i, ) else: info.text_encoder_outputs = [hidden_state1_i, hidden_state2_i, pool2_i]