MakeAnything / networks /lora_sd3.py
yiren98's picture
Upload 98 files
abd09b6 verified
# temporary minimum implementation of LoRA
# SD3 doesn't have Conv2d, so we ignore it
# TODO commonize with the original/SD3/FLUX implementation
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import math
import os
from typing import Dict, List, Optional, Tuple, Type, Union
from transformers import CLIPTextModelWithProjection, T5EncoderModel
import numpy as np
import torch
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
from networks.lora_flux import LoRAModule, LoRAInfModule
from library import sd3_models
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
vae: sd3_models.SDVAE,
text_encoders: List[Union[CLIPTextModelWithProjection, T5EncoderModel]],
mmdit,
neuron_dropout: Optional[float] = None,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
# attn dim, mlp dim: only for DoubleStreamBlock. SingleStreamBlock is not supported because of combined qkv
context_attn_dim = kwargs.get("context_attn_dim", None)
context_mlp_dim = kwargs.get("context_mlp_dim", None)
context_mod_dim = kwargs.get("context_mod_dim", None)
x_attn_dim = kwargs.get("x_attn_dim", None)
x_mlp_dim = kwargs.get("x_mlp_dim", None)
x_mod_dim = kwargs.get("x_mod_dim", None)
if context_attn_dim is not None:
context_attn_dim = int(context_attn_dim)
if context_mlp_dim is not None:
context_mlp_dim = int(context_mlp_dim)
if context_mod_dim is not None:
context_mod_dim = int(context_mod_dim)
if x_attn_dim is not None:
x_attn_dim = int(x_attn_dim)
if x_mlp_dim is not None:
x_mlp_dim = int(x_mlp_dim)
if x_mod_dim is not None:
x_mod_dim = int(x_mod_dim)
type_dims = [context_attn_dim, context_mlp_dim, context_mod_dim, x_attn_dim, x_mlp_dim, x_mod_dim]
if all([d is None for d in type_dims]):
type_dims = None
# emb_dims [context_embedder, t_embedder, x_embedder, y_embedder, final_mod, final_linear]
emb_dims = kwargs.get("emb_dims", None)
if emb_dims is not None:
emb_dims = emb_dims.strip()
if emb_dims.startswith("[") and emb_dims.endswith("]"):
emb_dims = emb_dims[1:-1]
emb_dims = [int(d) for d in emb_dims.split(",")] # is it better to use ast.literal_eval?
assert len(emb_dims) == 6, f"invalid emb_dims: {emb_dims}, must be 6 dimensions (context, t, x, y, final_mod, final_linear)"
# double/single train blocks
def parse_block_selection(selection: str, total_blocks: int) -> List[bool]:
"""
Parse a block selection string and return a list of booleans.
Args:
selection (str): A string specifying which blocks to select.
total_blocks (int): The total number of blocks available.
Returns:
List[bool]: A list of booleans indicating which blocks are selected.
"""
if selection == "all":
return [True] * total_blocks
if selection == "none" or selection == "":
return [False] * total_blocks
selected = [False] * total_blocks
ranges = selection.split(",")
for r in ranges:
if "-" in r:
start, end = map(str.strip, r.split("-"))
start = int(start)
end = int(end)
assert 0 <= start < total_blocks, f"invalid start index: {start}"
assert 0 <= end < total_blocks, f"invalid end index: {end}"
assert start <= end, f"invalid range: {start}-{end}"
for i in range(start, end + 1):
selected[i] = True
else:
index = int(r)
assert 0 <= index < total_blocks, f"invalid index: {index}"
selected[index] = True
return selected
train_block_indices = kwargs.get("train_block_indices", None)
if train_block_indices is not None:
train_block_indices = parse_block_selection(train_block_indices, 999) # 999 is a dummy number
# rank/module dropout
rank_dropout = kwargs.get("rank_dropout", None)
if rank_dropout is not None:
rank_dropout = float(rank_dropout)
module_dropout = kwargs.get("module_dropout", None)
if module_dropout is not None:
module_dropout = float(module_dropout)
# split qkv
split_qkv = kwargs.get("split_qkv", False)
if split_qkv is not None:
split_qkv = True if split_qkv == "True" else False
# train T5XXL
train_t5xxl = kwargs.get("train_t5xxl", False)
if train_t5xxl is not None:
train_t5xxl = True if train_t5xxl == "True" else False
# verbose
verbose = kwargs.get("verbose", False)
if verbose is not None:
verbose = True if verbose == "True" else False
# ใ™ใ”ใๅผ•ๆ•ฐใŒๅคšใ„ใช ( ^ฯ‰^)๏ฝฅ๏ฝฅ๏ฝฅ
network = LoRANetwork(
text_encoders,
mmdit,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
conv_lora_dim=conv_dim,
conv_alpha=conv_alpha,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
type_dims=type_dims,
emb_dims=emb_dims,
train_block_indices=train_block_indices,
verbose=verbose,
)
loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None)
loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None)
loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None)
loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None
loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None
loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None
if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None:
network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio)
return network
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, ae, text_encoders, mmdit, weights_sd=None, for_inference=False, **kwargs):
# if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping, and train t5xxl
modules_dim = {}
modules_alpha = {}
train_t5xxl = None
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# logger.info(lora_name, value.size(), dim)
if train_t5xxl is None or train_t5xxl is False:
train_t5xxl = "lora_te3" in lora_name
if train_t5xxl is None:
train_t5xxl = False
split_qkv = False # split_qkv is not needed to care, because state_dict is qkv combined
module_class = LoRAInfModule if for_inference else LoRAModule
network = LoRANetwork(
text_encoders,
mmdit,
multiplier=multiplier,
modules_dim=modules_dim,
modules_alpha=modules_alpha,
module_class=module_class,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
)
return network, weights_sd
class LoRANetwork(torch.nn.Module):
SD3_TARGET_REPLACE_MODULE = ["SingleDiTBlock"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPSdpaAttention", "CLIPMLP", "T5Attention", "T5DenseGatedActDense"]
LORA_PREFIX_SD3 = "lora_unet" # make ComfyUI compatible
LORA_PREFIX_TEXT_ENCODER_CLIP_L = "lora_te1"
LORA_PREFIX_TEXT_ENCODER_CLIP_G = "lora_te2"
LORA_PREFIX_TEXT_ENCODER_T5 = "lora_te3" # make ComfyUI compatible
def __init__(
self,
text_encoders: List[Union[CLIPTextModelWithProjection, T5EncoderModel]],
unet: sd3_models.MMDiT,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
module_class: Type[object] = LoRAModule,
modules_dim: Optional[Dict[str, int]] = None,
modules_alpha: Optional[Dict[str, int]] = None,
split_qkv: bool = False,
train_t5xxl: bool = False,
type_dims: Optional[List[int]] = None,
emb_dims: Optional[List[int]] = None,
train_block_indices: Optional[List[bool]] = None,
verbose: Optional[bool] = False,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.split_qkv = split_qkv
self.train_t5xxl = train_t5xxl
self.type_dims = type_dims
self.emb_dims = emb_dims
self.train_block_indices = train_block_indices
self.loraplus_lr_ratio = None
self.loraplus_unet_lr_ratio = None
self.loraplus_text_encoder_lr_ratio = None
if modules_dim is not None:
logger.info(f"create LoRA network from weights")
self.emb_dims = [0] * 6 # create emb_dims
# verbose = True
else:
logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
logger.info(
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}"
)
# if self.conv_lora_dim is not None:
# logger.info(
# f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}"
# )
qkv_dim = 0
if self.split_qkv:
logger.info(f"split qkv for LoRA")
qkv_dim = unet.joint_blocks[0].context_block.attn.qkv.weight.size(0)
if train_t5xxl:
logger.info(f"train T5XXL as well")
# create module instances
def create_modules(
is_mmdit: bool,
text_encoder_idx: Optional[int],
root_module: torch.nn.Module,
target_replace_modules: List[str],
filter: Optional[str] = None,
default_dim: Optional[int] = None,
include_conv2d_if_filter: bool = False,
) -> List[LoRAModule]:
prefix = (
self.LORA_PREFIX_SD3
if is_mmdit
else [self.LORA_PREFIX_TEXT_ENCODER_CLIP_L, self.LORA_PREFIX_TEXT_ENCODER_CLIP_G, self.LORA_PREFIX_TEXT_ENCODER_T5][
text_encoder_idx
]
)
loras = []
skipped = []
for name, module in root_module.named_modules():
if target_replace_modules is None or module.__class__.__name__ in target_replace_modules:
if target_replace_modules is None: # dirty hack for all modules
module = root_module # search all modules
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + (name + "." if name else "") + child_name
lora_name = lora_name.replace(".", "_")
force_incl_conv2d = False
if filter is not None:
if not filter in lora_name:
continue
force_incl_conv2d = include_conv2d_if_filter
dim = None
alpha = None
if modules_dim is not None:
# ใƒขใ‚ธใƒฅใƒผใƒซๆŒ‡ๅฎšใ‚ใ‚Š
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
else:
# ้€šๅธธใ€ใ™ในใฆๅฏพ่ฑกใจใ™ใ‚‹
if is_linear or is_conv2d_1x1:
dim = default_dim if default_dim is not None else self.lora_dim
alpha = self.alpha
if is_mmdit and type_dims is not None:
# type_dims = [context_attn_dim, context_mlp_dim, context_mod_dim, x_attn_dim, x_mlp_dim, x_mod_dim]
identifier = [
("context_block", "attn"),
("context_block", "mlp"),
("context_block", "adaLN_modulation"),
("x_block", "attn"),
("x_block", "mlp"),
("x_block", "adaLN_modulation"),
]
for i, d in enumerate(type_dims):
if d is not None and all([id in lora_name for id in identifier[i]]):
dim = d # may be 0 for skip
break
if is_mmdit and dim and self.train_block_indices is not None and "joint_blocks" in lora_name:
# "lora_unet_joint_blocks_0_x_block_attn_proj..."
block_index = int(lora_name.split("_")[4]) # bit dirty
if self.train_block_indices is not None and not self.train_block_indices[block_index]:
dim = 0
elif self.conv_lora_dim is not None:
dim = self.conv_lora_dim
alpha = self.conv_alpha
elif force_incl_conv2d:
# x_embedder
dim = default_dim if default_dim is not None else self.lora_dim
alpha = self.alpha
if dim is None or dim == 0:
# skipใ—ใŸๆƒ…ๅ ฑใ‚’ๅ‡บๅŠ›
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None):
skipped.append(lora_name)
continue
# qkv split
split_dims = None
if is_mmdit and split_qkv:
if "joint_blocks" in lora_name and "qkv" in lora_name:
split_dims = [qkv_dim // 3] * 3
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
split_dims=split_dims,
)
loras.append(lora)
if target_replace_modules is None:
break # all modules are searched
return loras, skipped
# create LoRA for text encoder
# ๆฏŽๅ›žใ™ในใฆใฎใƒขใ‚ธใƒฅใƒผใƒซใ‚’ไฝœใ‚‹ใฎใฏ็„ก้ง„ใชใฎใง่ฆๆคœ่จŽ
self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = []
skipped_te = []
for i, text_encoder in enumerate(text_encoders):
index = i
if not train_t5xxl and index >= 2: # 0: CLIP-L, 1: CLIP-G, 2: T5XXL, so we skip T5XXL if train_t5xxl is False
break
logger.info(f"create LoRA for Text Encoder {index+1}:")
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.")
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
# create LoRA for U-Net
self.unet_loras: List[Union[LoRAModule, LoRAInfModule]]
self.unet_loras, skipped_un = create_modules(True, None, unet, LoRANetwork.SD3_TARGET_REPLACE_MODULE)
# emb_dims [context_embedder, t_embedder, x_embedder, y_embedder, final_mod, final_linear]
if self.emb_dims:
for filter, in_dim in zip(
[
"context_embedder",
"_t_embedder", # don't use "t_embedder" because it's used in "context_embedder"
"x_embedder",
"y_embedder",
"final_layer_adaLN_modulation",
"final_layer_linear",
],
self.emb_dims,
):
# x_embedder is conv2d, so we need to include it
loras, _ = create_modules(
True, None, unet, None, filter=filter, default_dim=in_dim, include_conv2d_if_filter=filter == "x_embedder"
)
# if len(loras) > 0:
# logger.info(f"create LoRA for {filter}: {len(loras)} modules.")
self.unet_loras.extend(loras)
logger.info(f"create LoRA for SD3 MMDiT: {len(self.unet_loras)} modules.")
if verbose:
for lora in self.unet_loras:
logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}")
skipped = skipped_te + skipped_un
if verbose and len(skipped) > 0:
logger.warning(
f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)ใŒ0ใฎ็‚บใ€ๆฌกใฎ{len(skipped)}ๅ€‹ใฎLoRAใƒขใ‚ธใƒฅใƒผใƒซใฏใ‚นใ‚ญใƒƒใƒ—ใ•ใ‚Œใพใ™:"
)
for name in skipped:
logger.info(f"\t{name}")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def set_enabled(self, is_enabled):
for lora in self.text_encoder_loras + self.unet_loras:
lora.enabled = is_enabled
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def load_state_dict(self, state_dict, strict=True):
# override to convert original weight to split qkv
if not self.split_qkv:
return super().load_state_dict(state_dict, strict)
# split qkv
for key in list(state_dict.keys()):
if not ("joint_blocks" in key and "qkv" in key):
continue
weight = state_dict[key]
lora_name = key.split(".")[0]
if "lora_down" in key and "weight" in key:
# dense weight (rank*3, in_dim)
split_weight = torch.chunk(weight, 3, dim=0)
for i, split_w in enumerate(split_weight):
state_dict[f"{lora_name}.lora_down.{i}.weight"] = split_w
del state_dict[key]
# print(f"split {key}: {weight.shape} to {[w.shape for w in split_weight]}")
elif "lora_up" in key and "weight" in key:
# sparse weight (out_dim=sum(split_dims), rank*3)
rank = weight.size(1) // 3
i = 0
split_dim = weight.shape[0] // 3
for j in range(3):
state_dict[f"{lora_name}.lora_up.{j}.weight"] = weight[i : i + split_dim, j * rank : (j + 1) * rank]
i += split_dim
del state_dict[key]
# alpha is unchanged
return super().load_state_dict(state_dict, strict)
def state_dict(self, destination=None, prefix="", keep_vars=False):
if not self.split_qkv:
return super().state_dict(destination, prefix, keep_vars)
# merge qkv
state_dict = super().state_dict(destination, prefix, keep_vars)
new_state_dict = {}
for key in list(state_dict.keys()):
if not ("joint_blocks" in key and "qkv" in key):
new_state_dict[key] = state_dict[key]
continue
if key not in state_dict:
continue # already merged
lora_name = key.split(".")[0]
# (rank, in_dim) * 3
down_weights = [state_dict.pop(f"{lora_name}.lora_down.{i}.weight") for i in range(3)]
# (split dim, rank) * 3
up_weights = [state_dict.pop(f"{lora_name}.lora_up.{i}.weight") for i in range(3)]
alpha = state_dict.pop(f"{lora_name}.alpha")
# merge down weight
down_weight = torch.cat(down_weights, dim=0) # (rank, split_dim) * 3 -> (rank*3, sum of split_dim)
# merge up weight (sum of split_dim, rank*3)
split_dim, rank = up_weights[0].size()
qkv_dim = split_dim * 3
up_weight = torch.zeros((qkv_dim, down_weight.size(0)), device=down_weight.device, dtype=down_weight.dtype)
i = 0
for j in range(3):
up_weight[i : i + split_dim, j * rank : (j + 1) * rank] = up_weights[j]
i += split_dim
new_state_dict[f"{lora_name}.lora_down.weight"] = down_weight
new_state_dict[f"{lora_name}.lora_up.weight"] = up_weight
new_state_dict[f"{lora_name}.alpha"] = alpha
# print(
# f"merged {lora_name}: {lora_name}, {[w.shape for w in down_weights]}, {[w.shape for w in up_weights]} to {down_weight.shape}, {up_weight.shape}"
# )
print(f"new key: {lora_name}.lora_down.weight, {lora_name}.lora_up.weight, {lora_name}.alpha")
return new_state_dict
def apply_to(self, text_encoders, mmdit, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
# ใƒžใƒผใ‚ธใงใใ‚‹ใ‹ใฉใ†ใ‹ใ‚’่ฟ”ใ™
def is_mergeable(self):
return True
# TODO refactor to common function with apply_to
def merge_to(self, text_encoders, mmdit, weights_sd, dtype=None, device=None):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if (
key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP_L)
or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP_G)
or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5)
):
apply_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_SD3):
apply_unet = True
if apply_text_encoder:
logger.info("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
logger.info(f"weights are merged")
def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio):
self.loraplus_lr_ratio = loraplus_lr_ratio
self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio
self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}")
logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}")
def prepare_optimizer_params_with_multiple_te_lrs(self, text_encoder_lr, unet_lr, default_lr):
# make sure text_encoder_lr as list of three elements
# if float, use the same value for all three
if text_encoder_lr is None or (isinstance(text_encoder_lr, list) and len(text_encoder_lr) == 0):
text_encoder_lr = [default_lr, default_lr, default_lr]
elif isinstance(text_encoder_lr, float) or isinstance(text_encoder_lr, int):
text_encoder_lr = [float(text_encoder_lr), float(text_encoder_lr), float(text_encoder_lr)]
elif len(text_encoder_lr) == 1:
text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[0], text_encoder_lr[0]]
elif len(text_encoder_lr) == 2:
text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[1], text_encoder_lr[1]]
self.requires_grad_(True)
all_params = []
lr_descriptions = []
def assemble_params(loras, lr, loraplus_ratio):
param_groups = {"lora": {}, "plus": {}}
for lora in loras:
for name, param in lora.named_parameters():
if loraplus_ratio is not None and "lora_up" in name:
param_groups["plus"][f"{lora.lora_name}.{name}"] = param
else:
param_groups["lora"][f"{lora.lora_name}.{name}"] = param
params = []
descriptions = []
for key in param_groups.keys():
param_data = {"params": param_groups[key].values()}
if len(param_data["params"]) == 0:
continue
if lr is not None:
if key == "plus":
param_data["lr"] = lr * loraplus_ratio
else:
param_data["lr"] = lr
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None:
logger.info("NO LR skipping!")
continue
params.append(param_data)
descriptions.append("plus" if key == "plus" else "")
return params, descriptions
if self.text_encoder_loras:
loraplus_lr_ratio = self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio
# split text encoder loras for te1 and te3
te1_loras = [
lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP_L)
]
te2_loras = [
lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP_G)
]
te3_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_T5)]
if len(te1_loras) > 0:
logger.info(f"Text Encoder 1 (CLIP-L): {len(te1_loras)} modules, LR {text_encoder_lr[0]}")
params, descriptions = assemble_params(te1_loras, text_encoder_lr[0], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions])
if len(te2_loras) > 0:
logger.info(f"Text Encoder 2 (CLIP-G): {len(te2_loras)} modules, LR {text_encoder_lr[1]}")
params, descriptions = assemble_params(te2_loras, text_encoder_lr[1], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions])
if len(te3_loras) > 0:
logger.info(f"Text Encoder 3 (T5XXL): {len(te3_loras)} modules, LR {text_encoder_lr[2]}")
params, descriptions = assemble_params(te3_loras, text_encoder_lr[2], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 3 " + (" " + d if d else "") for d in descriptions])
if self.unet_loras:
params, descriptions = assemble_params(
self.unet_loras,
unet_lr if unet_lr is not None else default_lr,
self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio,
)
all_params.extend(params)
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions])
return all_params, lr_descriptions
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from library import train_util
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def backup_weights(self):
# ้‡ใฟใฎใƒใƒƒใ‚ฏใ‚ขใƒƒใƒ—ใ‚’่กŒใ†
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not hasattr(org_module, "_lora_org_weight"):
sd = org_module.state_dict()
org_module._lora_org_weight = sd["weight"].detach().clone()
org_module._lora_restored = True
def restore_weights(self):
# ้‡ใฟใฎใƒชใ‚นใƒˆใ‚ขใ‚’่กŒใ†
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not org_module._lora_restored:
sd = org_module.state_dict()
sd["weight"] = org_module._lora_org_weight
org_module.load_state_dict(sd)
org_module._lora_restored = True
def pre_calculation(self):
# ไบ‹ๅ‰่จˆ็ฎ—ใ‚’่กŒใ†
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
sd = org_module.state_dict()
org_weight = sd["weight"]
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
sd["weight"] = org_weight + lora_weight
assert sd["weight"].shape == org_weight.shape
org_module.load_state_dict(sd)
org_module._lora_restored = False
lora.enabled = False
def apply_max_norm_regularization(self, max_norm_value, device):
downkeys = []
upkeys = []
alphakeys = []
norms = []
keys_scaled = 0
state_dict = self.state_dict()
for key in state_dict.keys():
if "lora_down" in key and "weight" in key:
downkeys.append(key)
upkeys.append(key.replace("lora_down", "lora_up"))
alphakeys.append(key.replace("lora_down.weight", "alpha"))
for i in range(len(downkeys)):
down = state_dict[downkeys[i]].to(device)
up = state_dict[upkeys[i]].to(device)
alpha = state_dict[alphakeys[i]].to(device)
dim = down.shape[0]
scale = alpha / dim
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown *= scale
norm = updown.norm().clamp(min=max_norm_value / 2)
desired = torch.clamp(norm, max=max_norm_value)
ratio = desired.cpu() / norm.cpu()
sqrt_ratio = ratio**0.5
if ratio != 1:
keys_scaled += 1
state_dict[upkeys[i]] *= sqrt_ratio
state_dict[downkeys[i]] *= sqrt_ratio
scalednorm = updown.norm() * ratio
norms.append(scalednorm.item())
return keys_scaled, sum(norms) / len(norms), max(norms)