Spaces:
Running
on
Zero
Running
on
Zero
# temporary minimum implementation of LoRA | |
# FLUX doesn't have Conv2d, so we ignore it | |
# TODO commonize with the original implementation | |
# LoRA network module | |
# reference: | |
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py | |
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py | |
import math | |
import os | |
from typing import Dict, List, Optional, Tuple, Type, Union | |
from diffusers import AutoencoderKL | |
from transformers import CLIPTextModel | |
import numpy as np | |
import torch | |
import re | |
from library.utils import setup_logging | |
from library.sdxl_original_unet import SdxlUNet2DConditionModel | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
NUM_DOUBLE_BLOCKS = 19 | |
NUM_SINGLE_BLOCKS = 38 | |
class LoRAModule(torch.nn.Module): | |
""" | |
replaces forward method of the original Linear, instead of replacing the original Linear module. | |
""" | |
def __init__( | |
self, | |
lora_name, | |
org_module: torch.nn.Module, | |
multiplier=1.0, | |
lora_dim=4, | |
alpha=1, | |
dropout=None, | |
rank_dropout=None, | |
module_dropout=None, | |
split_dims: Optional[List[int]] = None, | |
): | |
""" | |
if alpha == 0 or None, alpha is rank (no scaling). | |
split_dims is used to mimic the split qkv of FLUX as same as Diffusers | |
""" | |
super().__init__() | |
self.lora_name = lora_name | |
if org_module.__class__.__name__ == "Conv2d": | |
in_dim = org_module.in_channels | |
out_dim = org_module.out_channels | |
else: | |
in_dim = org_module.in_features | |
out_dim = org_module.out_features | |
self.lora_dim = lora_dim | |
self.split_dims = split_dims | |
if split_dims is None: | |
if org_module.__class__.__name__ == "Conv2d": | |
kernel_size = org_module.kernel_size | |
stride = org_module.stride | |
padding = org_module.padding | |
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) | |
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False) | |
else: | |
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) | |
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False) | |
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) | |
torch.nn.init.zeros_(self.lora_up.weight) | |
else: | |
# conv2d not supported | |
assert sum(split_dims) == out_dim, "sum of split_dims must be equal to out_dim" | |
assert org_module.__class__.__name__ == "Linear", "split_dims is only supported for Linear" | |
# print(f"split_dims: {split_dims}") | |
self.lora_down = torch.nn.ModuleList( | |
[torch.nn.Linear(in_dim, self.lora_dim, bias=False) for _ in range(len(split_dims))] | |
) | |
self.lora_up = torch.nn.ModuleList([torch.nn.Linear(self.lora_dim, split_dim, bias=False) for split_dim in split_dims]) | |
for lora_down in self.lora_down: | |
torch.nn.init.kaiming_uniform_(lora_down.weight, a=math.sqrt(5)) | |
for lora_up in self.lora_up: | |
torch.nn.init.zeros_(lora_up.weight) | |
if type(alpha) == torch.Tensor: | |
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error | |
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha | |
self.scale = alpha / self.lora_dim | |
self.register_buffer("alpha", torch.tensor(alpha)) # ๅฎๆฐใจใใฆๆฑใใ | |
# same as microsoft's | |
self.multiplier = multiplier | |
self.org_module = org_module # remove in applying | |
self.dropout = dropout | |
self.rank_dropout = rank_dropout | |
self.module_dropout = module_dropout | |
def apply_to(self): | |
self.org_forward = self.org_module.forward | |
self.org_module.forward = self.forward | |
del self.org_module | |
def forward(self, x): | |
org_forwarded = self.org_forward(x) | |
# module dropout | |
if self.module_dropout is not None and self.training: | |
if torch.rand(1) < self.module_dropout: | |
return org_forwarded | |
if self.split_dims is None: | |
lx = self.lora_down(x) | |
# normal dropout | |
if self.dropout is not None and self.training: | |
lx = torch.nn.functional.dropout(lx, p=self.dropout) | |
# rank dropout | |
if self.rank_dropout is not None and self.training: | |
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout | |
if len(lx.size()) == 3: | |
mask = mask.unsqueeze(1) # for Text Encoder | |
elif len(lx.size()) == 4: | |
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d | |
lx = lx * mask | |
# scaling for rank dropout: treat as if the rank is changed | |
# maskใใ่จ็ฎใใใใจใ่ใใใใใใaugmentation็ใชๅนๆใๆๅพ ใใฆrank_dropoutใ็จใใ | |
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability | |
else: | |
scale = self.scale | |
lx = self.lora_up(lx) | |
return org_forwarded + lx * self.multiplier * scale | |
else: | |
lxs = [lora_down(x) for lora_down in self.lora_down] | |
# normal dropout | |
if self.dropout is not None and self.training: | |
lxs = [torch.nn.functional.dropout(lx, p=self.dropout) for lx in lxs] | |
# rank dropout | |
if self.rank_dropout is not None and self.training: | |
masks = [torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout for lx in lxs] | |
for i in range(len(lxs)): | |
if len(lx.size()) == 3: | |
masks[i] = masks[i].unsqueeze(1) | |
elif len(lx.size()) == 4: | |
masks[i] = masks[i].unsqueeze(-1).unsqueeze(-1) | |
lxs[i] = lxs[i] * masks[i] | |
# scaling for rank dropout: treat as if the rank is changed | |
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability | |
else: | |
scale = self.scale | |
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)] | |
return org_forwarded + torch.cat(lxs, dim=-1) * self.multiplier * scale | |
class LoRAInfModule(LoRAModule): | |
def __init__( | |
self, | |
lora_name, | |
org_module: torch.nn.Module, | |
multiplier=1.0, | |
lora_dim=4, | |
alpha=1, | |
**kwargs, | |
): | |
# no dropout for inference | |
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha) | |
self.org_module_ref = [org_module] # ๅพใใๅ็ งใงใใใใใซ | |
self.enabled = True | |
self.network: LoRANetwork = None | |
def set_network(self, network): | |
self.network = network | |
# freezeใใฆใใผใธใใ | |
def merge_to(self, sd, dtype, device): | |
# extract weight from org_module | |
org_sd = self.org_module.state_dict() | |
weight = org_sd["weight"] | |
org_dtype = weight.dtype | |
org_device = weight.device | |
weight = weight.to(torch.float) # calc in float | |
if dtype is None: | |
dtype = org_dtype | |
if device is None: | |
device = org_device | |
if self.split_dims is None: | |
# get up/down weight | |
down_weight = sd["lora_down.weight"].to(torch.float).to(device) | |
up_weight = sd["lora_up.weight"].to(torch.float).to(device) | |
# merge weight | |
if len(weight.size()) == 2: | |
# linear | |
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale | |
elif down_weight.size()[2:4] == (1, 1): | |
# conv2d 1x1 | |
weight = ( | |
weight | |
+ self.multiplier | |
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
* self.scale | |
) | |
else: | |
# conv2d 3x3 | |
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
# logger.info(conved.size(), weight.size(), module.stride, module.padding) | |
weight = weight + self.multiplier * conved * self.scale | |
# set weight to org_module | |
org_sd["weight"] = weight.to(dtype) | |
self.org_module.load_state_dict(org_sd) | |
else: | |
# split_dims | |
total_dims = sum(self.split_dims) | |
for i in range(len(self.split_dims)): | |
# get up/down weight | |
down_weight = sd[f"lora_down.{i}.weight"].to(torch.float).to(device) # (rank, in_dim) | |
up_weight = sd[f"lora_up.{i}.weight"].to(torch.float).to(device) # (split dim, rank) | |
# pad up_weight -> (total_dims, rank) | |
padded_up_weight = torch.zeros((total_dims, up_weight.size(0)), device=device, dtype=torch.float) | |
padded_up_weight[sum(self.split_dims[:i]) : sum(self.split_dims[: i + 1])] = up_weight | |
# merge weight | |
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale | |
# set weight to org_module | |
org_sd["weight"] = weight.to(dtype) | |
self.org_module.load_state_dict(org_sd) | |
# ๅพฉๅ ใงใใใใผใธใฎใใใใใฎใขใธใฅใผใซใฎweightใ่ฟใ | |
def get_weight(self, multiplier=None): | |
if multiplier is None: | |
multiplier = self.multiplier | |
# get up/down weight from module | |
up_weight = self.lora_up.weight.to(torch.float) | |
down_weight = self.lora_down.weight.to(torch.float) | |
# pre-calculated weight | |
if len(down_weight.size()) == 2: | |
# linear | |
weight = self.multiplier * (up_weight @ down_weight) * self.scale | |
elif down_weight.size()[2:4] == (1, 1): | |
# conv2d 1x1 | |
weight = ( | |
self.multiplier | |
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
* self.scale | |
) | |
else: | |
# conv2d 3x3 | |
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
weight = self.multiplier * conved * self.scale | |
return weight | |
def set_region(self, region): | |
self.region = region | |
self.region_mask = None | |
def default_forward(self, x): | |
# logger.info(f"default_forward {self.lora_name} {x.size()}") | |
if self.split_dims is None: | |
lx = self.lora_down(x) | |
lx = self.lora_up(lx) | |
return self.org_forward(x) + lx * self.multiplier * self.scale | |
else: | |
lxs = [lora_down(x) for lora_down in self.lora_down] | |
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)] | |
return self.org_forward(x) + torch.cat(lxs, dim=-1) * self.multiplier * self.scale | |
def forward(self, x): | |
if not self.enabled: | |
return self.org_forward(x) | |
return self.default_forward(x) | |
def create_network( | |
multiplier: float, | |
network_dim: Optional[int], | |
network_alpha: Optional[float], | |
ae: AutoencoderKL, | |
text_encoders: List[CLIPTextModel], | |
flux, | |
neuron_dropout: Optional[float] = None, | |
**kwargs, | |
): | |
if network_dim is None: | |
network_dim = 4 # default | |
if network_alpha is None: | |
network_alpha = 1.0 | |
# extract dim/alpha for conv2d, and block dim | |
conv_dim = kwargs.get("conv_dim", None) | |
conv_alpha = kwargs.get("conv_alpha", None) | |
if conv_dim is not None: | |
conv_dim = int(conv_dim) | |
if conv_alpha is None: | |
conv_alpha = 1.0 | |
else: | |
conv_alpha = float(conv_alpha) | |
# attn dim, mlp dim: only for DoubleStreamBlock. SingleStreamBlock is not supported because of combined qkv | |
img_attn_dim = kwargs.get("img_attn_dim", None) | |
txt_attn_dim = kwargs.get("txt_attn_dim", None) | |
img_mlp_dim = kwargs.get("img_mlp_dim", None) | |
txt_mlp_dim = kwargs.get("txt_mlp_dim", None) | |
img_mod_dim = kwargs.get("img_mod_dim", None) | |
txt_mod_dim = kwargs.get("txt_mod_dim", None) | |
single_dim = kwargs.get("single_dim", None) # SingleStreamBlock | |
single_mod_dim = kwargs.get("single_mod_dim", None) # SingleStreamBlock | |
if img_attn_dim is not None: | |
img_attn_dim = int(img_attn_dim) | |
if txt_attn_dim is not None: | |
txt_attn_dim = int(txt_attn_dim) | |
if img_mlp_dim is not None: | |
img_mlp_dim = int(img_mlp_dim) | |
if txt_mlp_dim is not None: | |
txt_mlp_dim = int(txt_mlp_dim) | |
if img_mod_dim is not None: | |
img_mod_dim = int(img_mod_dim) | |
if txt_mod_dim is not None: | |
txt_mod_dim = int(txt_mod_dim) | |
if single_dim is not None: | |
single_dim = int(single_dim) | |
if single_mod_dim is not None: | |
single_mod_dim = int(single_mod_dim) | |
type_dims = [img_attn_dim, txt_attn_dim, img_mlp_dim, txt_mlp_dim, img_mod_dim, txt_mod_dim, single_dim, single_mod_dim] | |
if all([d is None for d in type_dims]): | |
type_dims = None | |
# in_dims [img, time, vector, guidance, txt] | |
in_dims = kwargs.get("in_dims", None) | |
if in_dims is not None: | |
in_dims = in_dims.strip() | |
if in_dims.startswith("[") and in_dims.endswith("]"): | |
in_dims = in_dims[1:-1] | |
in_dims = [int(d) for d in in_dims.split(",")] # is it better to use ast.literal_eval? | |
assert len(in_dims) == 5, f"invalid in_dims: {in_dims}, must be 5 dimensions (img, time, vector, guidance, txt)" | |
# double/single train blocks | |
def parse_block_selection(selection: str, total_blocks: int) -> List[bool]: | |
""" | |
Parse a block selection string and return a list of booleans. | |
Args: | |
selection (str): A string specifying which blocks to select. | |
total_blocks (int): The total number of blocks available. | |
Returns: | |
List[bool]: A list of booleans indicating which blocks are selected. | |
""" | |
if selection == "all": | |
return [True] * total_blocks | |
if selection == "none" or selection == "": | |
return [False] * total_blocks | |
selected = [False] * total_blocks | |
ranges = selection.split(",") | |
for r in ranges: | |
if "-" in r: | |
start, end = map(str.strip, r.split("-")) | |
start = int(start) | |
end = int(end) | |
assert 0 <= start < total_blocks, f"invalid start index: {start}" | |
assert 0 <= end < total_blocks, f"invalid end index: {end}" | |
assert start <= end, f"invalid range: {start}-{end}" | |
for i in range(start, end + 1): | |
selected[i] = True | |
else: | |
index = int(r) | |
assert 0 <= index < total_blocks, f"invalid index: {index}" | |
selected[index] = True | |
return selected | |
train_double_block_indices = kwargs.get("train_double_block_indices", None) | |
train_single_block_indices = kwargs.get("train_single_block_indices", None) | |
if train_double_block_indices is not None: | |
train_double_block_indices = parse_block_selection(train_double_block_indices, NUM_DOUBLE_BLOCKS) | |
if train_single_block_indices is not None: | |
train_single_block_indices = parse_block_selection(train_single_block_indices, NUM_SINGLE_BLOCKS) | |
# rank/module dropout | |
rank_dropout = kwargs.get("rank_dropout", None) | |
if rank_dropout is not None: | |
rank_dropout = float(rank_dropout) | |
module_dropout = kwargs.get("module_dropout", None) | |
if module_dropout is not None: | |
module_dropout = float(module_dropout) | |
# single or double blocks | |
train_blocks = kwargs.get("train_blocks", None) # None (default), "all" (same as None), "single", "double" | |
if train_blocks is not None: | |
assert train_blocks in ["all", "single", "double"], f"invalid train_blocks: {train_blocks}" | |
# split qkv | |
split_qkv = kwargs.get("split_qkv", False) | |
if split_qkv is not None: | |
split_qkv = True if split_qkv == "True" else False | |
# train T5XXL | |
train_t5xxl = kwargs.get("train_t5xxl", False) | |
if train_t5xxl is not None: | |
train_t5xxl = True if train_t5xxl == "True" else False | |
# verbose | |
verbose = kwargs.get("verbose", False) | |
if verbose is not None: | |
verbose = True if verbose == "True" else False | |
# ใใใๅผๆฐใๅคใใช ( ^ฯ^)๏ฝฅ๏ฝฅ๏ฝฅ | |
network = LoRANetwork( | |
text_encoders, | |
flux, | |
multiplier=multiplier, | |
lora_dim=network_dim, | |
alpha=network_alpha, | |
dropout=neuron_dropout, | |
rank_dropout=rank_dropout, | |
module_dropout=module_dropout, | |
conv_lora_dim=conv_dim, | |
conv_alpha=conv_alpha, | |
train_blocks=train_blocks, | |
split_qkv=split_qkv, | |
train_t5xxl=train_t5xxl, | |
type_dims=type_dims, | |
in_dims=in_dims, | |
train_double_block_indices=train_double_block_indices, | |
train_single_block_indices=train_single_block_indices, | |
verbose=verbose, | |
) | |
loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None) | |
loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None) | |
loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None) | |
loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None | |
loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None | |
loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None | |
if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None: | |
network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio) | |
return network | |
# Create network from weights for inference, weights are not loaded here (because can be merged) | |
def create_network_from_weights(multiplier, file, ae, text_encoders, flux, weights_sd=None, for_inference=False, **kwargs): | |
# if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True | |
if weights_sd is None: | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import load_file, safe_open | |
weights_sd = load_file(file) | |
else: | |
weights_sd = torch.load(file, map_location="cpu") | |
# get dim/alpha mapping, and train t5xxl | |
modules_dim = {} | |
modules_alpha = {} | |
train_t5xxl = None | |
for key, value in weights_sd.items(): | |
if "." not in key: | |
continue | |
lora_name = key.split(".")[0] | |
if "alpha" in key: | |
modules_alpha[lora_name] = value | |
elif "lora_down" in key: | |
dim = value.size()[0] | |
modules_dim[lora_name] = dim | |
# logger.info(lora_name, value.size(), dim) | |
if train_t5xxl is None or train_t5xxl is False: | |
train_t5xxl = "lora_te3" in lora_name | |
if train_t5xxl is None: | |
train_t5xxl = False | |
# # split qkv | |
# double_qkv_rank = None | |
# single_qkv_rank = None | |
# rank = None | |
# for lora_name, dim in modules_dim.items(): | |
# if "double" in lora_name and "qkv" in lora_name: | |
# double_qkv_rank = dim | |
# elif "single" in lora_name and "linear1" in lora_name: | |
# single_qkv_rank = dim | |
# elif rank is None: | |
# rank = dim | |
# if double_qkv_rank is not None and single_qkv_rank is not None and rank is not None: | |
# break | |
# split_qkv = (double_qkv_rank is not None and double_qkv_rank != rank) or ( | |
# single_qkv_rank is not None and single_qkv_rank != rank | |
# ) | |
split_qkv = False # split_qkv is not needed to care, because state_dict is qkv combined | |
module_class = LoRAInfModule if for_inference else LoRAModule | |
network = LoRANetwork( | |
text_encoders, | |
flux, | |
multiplier=multiplier, | |
modules_dim=modules_dim, | |
modules_alpha=modules_alpha, | |
module_class=module_class, | |
split_qkv=split_qkv, | |
train_t5xxl=train_t5xxl, | |
) | |
return network, weights_sd | |
class LoRANetwork(torch.nn.Module): | |
# FLUX_TARGET_REPLACE_MODULE = ["DoubleStreamBlock", "SingleStreamBlock"] | |
FLUX_TARGET_REPLACE_MODULE_DOUBLE = ["DoubleStreamBlock"] | |
FLUX_TARGET_REPLACE_MODULE_SINGLE = ["SingleStreamBlock"] | |
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPSdpaAttention", "CLIPMLP", "T5Attention", "T5DenseGatedActDense"] | |
LORA_PREFIX_FLUX = "lora_unet" # make ComfyUI compatible | |
LORA_PREFIX_TEXT_ENCODER_CLIP = "lora_te1" | |
LORA_PREFIX_TEXT_ENCODER_T5 = "lora_te3" # make ComfyUI compatible | |
def __init__( | |
self, | |
text_encoders: Union[List[CLIPTextModel], CLIPTextModel], | |
unet, | |
multiplier: float = 1.0, | |
lora_dim: int = 4, | |
alpha: float = 1, | |
dropout: Optional[float] = None, | |
rank_dropout: Optional[float] = None, | |
module_dropout: Optional[float] = None, | |
conv_lora_dim: Optional[int] = None, | |
conv_alpha: Optional[float] = None, | |
module_class: Type[object] = LoRAModule, | |
modules_dim: Optional[Dict[str, int]] = None, | |
modules_alpha: Optional[Dict[str, int]] = None, | |
train_blocks: Optional[str] = None, | |
split_qkv: bool = False, | |
train_t5xxl: bool = False, | |
type_dims: Optional[List[int]] = None, | |
in_dims: Optional[List[int]] = None, | |
train_double_block_indices: Optional[List[bool]] = None, | |
train_single_block_indices: Optional[List[bool]] = None, | |
verbose: Optional[bool] = False, | |
) -> None: | |
super().__init__() | |
self.multiplier = multiplier | |
self.lora_dim = lora_dim | |
self.alpha = alpha | |
self.conv_lora_dim = conv_lora_dim | |
self.conv_alpha = conv_alpha | |
self.dropout = dropout | |
self.rank_dropout = rank_dropout | |
self.module_dropout = module_dropout | |
self.train_blocks = train_blocks if train_blocks is not None else "all" | |
self.split_qkv = split_qkv | |
self.train_t5xxl = train_t5xxl | |
self.type_dims = type_dims | |
self.in_dims = in_dims | |
self.train_double_block_indices = train_double_block_indices | |
self.train_single_block_indices = train_single_block_indices | |
self.loraplus_lr_ratio = None | |
self.loraplus_unet_lr_ratio = None | |
self.loraplus_text_encoder_lr_ratio = None | |
if modules_dim is not None: | |
logger.info(f"create LoRA network from weights") | |
self.in_dims = [0] * 5 # create in_dims | |
# verbose = True | |
else: | |
logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") | |
logger.info( | |
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}" | |
) | |
# if self.conv_lora_dim is not None: | |
# logger.info( | |
# f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}" | |
# ) | |
if self.split_qkv: | |
logger.info(f"split qkv for LoRA") | |
if self.train_blocks is not None: | |
logger.info(f"train {self.train_blocks} blocks only") | |
if train_t5xxl: | |
logger.info(f"train T5XXL as well") | |
# create module instances | |
def create_modules( | |
is_flux: bool, | |
text_encoder_idx: Optional[int], | |
root_module: torch.nn.Module, | |
target_replace_modules: List[str], | |
filter: Optional[str] = None, | |
default_dim: Optional[int] = None, | |
) -> List[LoRAModule]: | |
prefix = ( | |
self.LORA_PREFIX_FLUX | |
if is_flux | |
else (self.LORA_PREFIX_TEXT_ENCODER_CLIP if text_encoder_idx == 0 else self.LORA_PREFIX_TEXT_ENCODER_T5) | |
) | |
loras = [] | |
skipped = [] | |
for name, module in root_module.named_modules(): | |
if target_replace_modules is None or module.__class__.__name__ in target_replace_modules: | |
if target_replace_modules is None: # dirty hack for all modules | |
module = root_module # search all modules | |
for child_name, child_module in module.named_modules(): | |
is_linear = child_module.__class__.__name__ == "Linear" | |
is_conv2d = child_module.__class__.__name__ == "Conv2d" | |
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) | |
if is_linear or is_conv2d: | |
lora_name = prefix + "." + (name + "." if name else "") + child_name | |
lora_name = lora_name.replace(".", "_") | |
if filter is not None and not filter in lora_name: | |
continue | |
dim = None | |
alpha = None | |
if modules_dim is not None: | |
# ใขใธใฅใผใซๆๅฎใใ | |
if lora_name in modules_dim: | |
dim = modules_dim[lora_name] | |
alpha = modules_alpha[lora_name] | |
else: | |
# ้ๅธธใใในใฆๅฏพ่ฑกใจใใ | |
if is_linear or is_conv2d_1x1: | |
dim = default_dim if default_dim is not None else self.lora_dim | |
alpha = self.alpha | |
if is_flux and type_dims is not None: | |
identifier = [ | |
("img_attn",), | |
("txt_attn",), | |
("img_mlp",), | |
("txt_mlp",), | |
("img_mod",), | |
("txt_mod",), | |
("single_blocks", "linear"), | |
("modulation",), | |
] | |
for i, d in enumerate(type_dims): | |
if d is not None and all([id in lora_name for id in identifier[i]]): | |
dim = d # may be 0 for skip | |
break | |
if ( | |
is_flux | |
and dim | |
and ( | |
self.train_double_block_indices is not None | |
or self.train_single_block_indices is not None | |
) | |
and ("double" in lora_name or "single" in lora_name) | |
): | |
# "lora_unet_double_blocks_0_..." or "lora_unet_single_blocks_0_..." | |
block_index = int(lora_name.split("_")[4]) # bit dirty | |
if ( | |
"double" in lora_name | |
and self.train_double_block_indices is not None | |
and not self.train_double_block_indices[block_index] | |
): | |
dim = 0 | |
elif ( | |
"single" in lora_name | |
and self.train_single_block_indices is not None | |
and not self.train_single_block_indices[block_index] | |
): | |
dim = 0 | |
elif self.conv_lora_dim is not None: | |
dim = self.conv_lora_dim | |
alpha = self.conv_alpha | |
if dim is None or dim == 0: | |
# skipใใๆ ๅ ฑใๅบๅ | |
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None): | |
skipped.append(lora_name) | |
continue | |
# qkv split | |
split_dims = None | |
if is_flux and split_qkv: | |
if "double" in lora_name and "qkv" in lora_name: | |
split_dims = [3072] * 3 | |
elif "single" in lora_name and "linear1" in lora_name: | |
split_dims = [3072] * 3 + [12288] | |
lora = module_class( | |
lora_name, | |
child_module, | |
self.multiplier, | |
dim, | |
alpha, | |
dropout=dropout, | |
rank_dropout=rank_dropout, | |
module_dropout=module_dropout, | |
split_dims=split_dims, | |
) | |
loras.append(lora) | |
if target_replace_modules is None: | |
break # all modules are searched | |
return loras, skipped | |
# create LoRA for text encoder | |
# ๆฏๅใในใฆใฎใขใธใฅใผใซใไฝใใฎใฏ็ก้งใชใฎใง่ฆๆค่จ | |
self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = [] | |
skipped_te = [] | |
for i, text_encoder in enumerate(text_encoders): | |
index = i | |
if not train_t5xxl and index > 0: # 0: CLIP, 1: T5XXL, so we skip T5XXL if train_t5xxl is False | |
break | |
logger.info(f"create LoRA for Text Encoder {index+1}:") | |
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) | |
logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.") | |
self.text_encoder_loras.extend(text_encoder_loras) | |
skipped_te += skipped | |
# create LoRA for U-Net | |
if self.train_blocks == "all": | |
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE + LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE | |
elif self.train_blocks == "single": | |
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE | |
elif self.train_blocks == "double": | |
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE | |
self.unet_loras: List[Union[LoRAModule, LoRAInfModule]] | |
self.unet_loras, skipped_un = create_modules(True, None, unet, target_replace_modules) | |
# img, time, vector, guidance, txt | |
if self.in_dims: | |
for filter, in_dim in zip(["_img_in", "_time_in", "_vector_in", "_guidance_in", "_txt_in"], self.in_dims): | |
loras, _ = create_modules(True, None, unet, None, filter=filter, default_dim=in_dim) | |
self.unet_loras.extend(loras) | |
logger.info(f"create LoRA for FLUX {self.train_blocks} blocks: {len(self.unet_loras)} modules.") | |
if verbose: | |
for lora in self.unet_loras: | |
logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}") | |
skipped = skipped_te + skipped_un | |
if verbose and len(skipped) > 0: | |
logger.warning( | |
f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)ใ0ใฎ็บใๆฌกใฎ{len(skipped)}ๅใฎLoRAใขใธใฅใผใซใฏในใญใใใใใพใ:" | |
) | |
for name in skipped: | |
logger.info(f"\t{name}") | |
# assertion | |
names = set() | |
for lora in self.text_encoder_loras + self.unet_loras: | |
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" | |
names.add(lora.lora_name) | |
def set_multiplier(self, multiplier): | |
self.multiplier = multiplier | |
for lora in self.text_encoder_loras + self.unet_loras: | |
lora.multiplier = self.multiplier | |
def set_enabled(self, is_enabled): | |
for lora in self.text_encoder_loras + self.unet_loras: | |
lora.enabled = is_enabled | |
def load_weights(self, file): | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import load_file | |
weights_sd = load_file(file) | |
else: | |
weights_sd = torch.load(file, map_location="cpu") | |
info = self.load_state_dict(weights_sd, False) | |
return info | |
def load_state_dict(self, state_dict, strict=True): | |
# override to convert original weight to split qkv | |
if not self.split_qkv: | |
return super().load_state_dict(state_dict, strict) | |
# split qkv | |
for key in list(state_dict.keys()): | |
if "double" in key and "qkv" in key: | |
split_dims = [3072] * 3 | |
elif "single" in key and "linear1" in key: | |
split_dims = [3072] * 3 + [12288] | |
else: | |
continue | |
weight = state_dict[key] | |
lora_name = key.split(".")[0] | |
if "lora_down" in key and "weight" in key: | |
# dense weight (rank*3, in_dim) | |
split_weight = torch.chunk(weight, len(split_dims), dim=0) | |
for i, split_w in enumerate(split_weight): | |
state_dict[f"{lora_name}.lora_down.{i}.weight"] = split_w | |
del state_dict[key] | |
# print(f"split {key}: {weight.shape} to {[w.shape for w in split_weight]}") | |
elif "lora_up" in key and "weight" in key: | |
# sparse weight (out_dim=sum(split_dims), rank*3) | |
rank = weight.size(1) // len(split_dims) | |
i = 0 | |
for j in range(len(split_dims)): | |
state_dict[f"{lora_name}.lora_up.{j}.weight"] = weight[i : i + split_dims[j], j * rank : (j + 1) * rank] | |
i += split_dims[j] | |
del state_dict[key] | |
# # check is sparse | |
# i = 0 | |
# is_zero = True | |
# for j in range(len(split_dims)): | |
# for k in range(len(split_dims)): | |
# if j == k: | |
# continue | |
# is_zero = is_zero and torch.all(weight[i : i + split_dims[j], k * rank : (k + 1) * rank] == 0) | |
# i += split_dims[j] | |
# if not is_zero: | |
# logger.warning(f"weight is not sparse: {key}") | |
# else: | |
# logger.info(f"weight is sparse: {key}") | |
# print( | |
# f"split {key}: {weight.shape} to {[state_dict[k].shape for k in [f'{lora_name}.lora_up.{j}.weight' for j in range(len(split_dims))]]}" | |
# ) | |
# alpha is unchanged | |
return super().load_state_dict(state_dict, strict) | |
def state_dict(self, destination=None, prefix="", keep_vars=False): | |
if not self.split_qkv: | |
return super().state_dict(destination, prefix, keep_vars) | |
# merge qkv | |
state_dict = super().state_dict(destination, prefix, keep_vars) | |
new_state_dict = {} | |
for key in list(state_dict.keys()): | |
if "double" in key and "qkv" in key: | |
split_dims = [3072] * 3 | |
elif "single" in key and "linear1" in key: | |
split_dims = [3072] * 3 + [12288] | |
else: | |
new_state_dict[key] = state_dict[key] | |
continue | |
if key not in state_dict: | |
continue # already merged | |
lora_name = key.split(".")[0] | |
# (rank, in_dim) * 3 | |
down_weights = [state_dict.pop(f"{lora_name}.lora_down.{i}.weight") for i in range(len(split_dims))] | |
# (split dim, rank) * 3 | |
up_weights = [state_dict.pop(f"{lora_name}.lora_up.{i}.weight") for i in range(len(split_dims))] | |
alpha = state_dict.pop(f"{lora_name}.alpha") | |
# merge down weight | |
down_weight = torch.cat(down_weights, dim=0) # (rank, split_dim) * 3 -> (rank*3, sum of split_dim) | |
# merge up weight (sum of split_dim, rank*3) | |
rank = up_weights[0].size(1) | |
up_weight = torch.zeros((sum(split_dims), down_weight.size(0)), device=down_weight.device, dtype=down_weight.dtype) | |
i = 0 | |
for j in range(len(split_dims)): | |
up_weight[i : i + split_dims[j], j * rank : (j + 1) * rank] = up_weights[j] | |
i += split_dims[j] | |
new_state_dict[f"{lora_name}.lora_down.weight"] = down_weight | |
new_state_dict[f"{lora_name}.lora_up.weight"] = up_weight | |
new_state_dict[f"{lora_name}.alpha"] = alpha | |
# print( | |
# f"merged {lora_name}: {lora_name}, {[w.shape for w in down_weights]}, {[w.shape for w in up_weights]} to {down_weight.shape}, {up_weight.shape}" | |
# ) | |
print(f"new key: {lora_name}.lora_down.weight, {lora_name}.lora_up.weight, {lora_name}.alpha") | |
return new_state_dict | |
def apply_to(self, text_encoders, flux, apply_text_encoder=True, apply_unet=True): | |
if apply_text_encoder: | |
logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules") | |
else: | |
self.text_encoder_loras = [] | |
if apply_unet: | |
logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules") | |
else: | |
self.unet_loras = [] | |
for lora in self.text_encoder_loras + self.unet_loras: | |
lora.apply_to() | |
self.add_module(lora.lora_name, lora) | |
# ใใผใธใงใใใใฉใใใ่ฟใ | |
def is_mergeable(self): | |
return True | |
# TODO refactor to common function with apply_to | |
def merge_to(self, text_encoders, flux, weights_sd, dtype=None, device=None): | |
apply_text_encoder = apply_unet = False | |
for key in weights_sd.keys(): | |
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP) or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5): | |
apply_text_encoder = True | |
elif key.startswith(LoRANetwork.LORA_PREFIX_FLUX): | |
apply_unet = True | |
if apply_text_encoder: | |
logger.info("enable LoRA for text encoder") | |
else: | |
self.text_encoder_loras = [] | |
if apply_unet: | |
logger.info("enable LoRA for U-Net") | |
else: | |
self.unet_loras = [] | |
for lora in self.text_encoder_loras + self.unet_loras: | |
sd_for_lora = {} | |
for key in weights_sd.keys(): | |
if key.startswith(lora.lora_name): | |
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] | |
lora.merge_to(sd_for_lora, dtype, device) | |
logger.info(f"weights are merged") | |
def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio): | |
self.loraplus_lr_ratio = loraplus_lr_ratio | |
self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio | |
self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio | |
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}") | |
logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}") | |
def prepare_optimizer_params_with_multiple_te_lrs(self, text_encoder_lr, unet_lr, default_lr): | |
# make sure text_encoder_lr as list of two elements | |
# if float, use the same value for both text encoders | |
if text_encoder_lr is None or (isinstance(text_encoder_lr, list) and len(text_encoder_lr) == 0): | |
text_encoder_lr = [default_lr, default_lr] | |
elif isinstance(text_encoder_lr, float) or isinstance(text_encoder_lr, int): | |
text_encoder_lr = [float(text_encoder_lr), float(text_encoder_lr)] | |
elif len(text_encoder_lr) == 1: | |
text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[0]] | |
self.requires_grad_(True) | |
all_params = [] | |
lr_descriptions = [] | |
def assemble_params(loras, lr, loraplus_ratio): | |
param_groups = {"lora": {}, "plus": {}} | |
for lora in loras: | |
for name, param in lora.named_parameters(): | |
if loraplus_ratio is not None and "lora_up" in name: | |
param_groups["plus"][f"{lora.lora_name}.{name}"] = param | |
else: | |
param_groups["lora"][f"{lora.lora_name}.{name}"] = param | |
params = [] | |
descriptions = [] | |
for key in param_groups.keys(): | |
param_data = {"params": param_groups[key].values()} | |
if len(param_data["params"]) == 0: | |
continue | |
if lr is not None: | |
if key == "plus": | |
param_data["lr"] = lr * loraplus_ratio | |
else: | |
param_data["lr"] = lr | |
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None: | |
logger.info("NO LR skipping!") | |
continue | |
params.append(param_data) | |
descriptions.append("plus" if key == "plus" else "") | |
return params, descriptions | |
if self.text_encoder_loras: | |
loraplus_lr_ratio = self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio | |
# split text encoder loras for te1 and te3 | |
te1_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP)] | |
te3_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_T5)] | |
if len(te1_loras) > 0: | |
logger.info(f"Text Encoder 1 (CLIP-L): {len(te1_loras)} modules, LR {text_encoder_lr[0]}") | |
params, descriptions = assemble_params(te1_loras, text_encoder_lr[0], loraplus_lr_ratio) | |
all_params.extend(params) | |
lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions]) | |
if len(te3_loras) > 0: | |
logger.info(f"Text Encoder 2 (T5XXL): {len(te3_loras)} modules, LR {text_encoder_lr[1]}") | |
params, descriptions = assemble_params(te3_loras, text_encoder_lr[1], loraplus_lr_ratio) | |
all_params.extend(params) | |
lr_descriptions.extend(["textencoder 2 " + (" " + d if d else "") for d in descriptions]) | |
if self.unet_loras: | |
params, descriptions = assemble_params( | |
self.unet_loras, | |
unet_lr if unet_lr is not None else default_lr, | |
self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio, | |
) | |
all_params.extend(params) | |
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions]) | |
return all_params, lr_descriptions | |
def enable_gradient_checkpointing(self): | |
# not supported | |
pass | |
def prepare_grad_etc(self, text_encoder, unet): | |
self.requires_grad_(True) | |
def on_epoch_start(self, text_encoder, unet): | |
self.train() | |
def get_trainable_params(self): | |
return self.parameters() | |
def save_weights(self, file, dtype, metadata): | |
if metadata is not None and len(metadata) == 0: | |
metadata = None | |
state_dict = self.state_dict() | |
if dtype is not None: | |
for key in list(state_dict.keys()): | |
v = state_dict[key] | |
v = v.detach().clone().to("cpu").to(dtype) | |
state_dict[key] = v | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import save_file | |
from library import train_util | |
# Precalculate model hashes to save time on indexing | |
if metadata is None: | |
metadata = {} | |
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) | |
metadata["sshs_model_hash"] = model_hash | |
metadata["sshs_legacy_hash"] = legacy_hash | |
save_file(state_dict, file, metadata) | |
else: | |
torch.save(state_dict, file) | |
def backup_weights(self): | |
# ้ใฟใฎใใใฏใขใใใ่กใ | |
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras | |
for lora in loras: | |
org_module = lora.org_module_ref[0] | |
if not hasattr(org_module, "_lora_org_weight"): | |
sd = org_module.state_dict() | |
org_module._lora_org_weight = sd["weight"].detach().clone() | |
org_module._lora_restored = True | |
def restore_weights(self): | |
# ้ใฟใฎใชในใใขใ่กใ | |
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras | |
for lora in loras: | |
org_module = lora.org_module_ref[0] | |
if not org_module._lora_restored: | |
sd = org_module.state_dict() | |
sd["weight"] = org_module._lora_org_weight | |
org_module.load_state_dict(sd) | |
org_module._lora_restored = True | |
def pre_calculation(self): | |
# ไบๅ่จ็ฎใ่กใ | |
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras | |
for lora in loras: | |
org_module = lora.org_module_ref[0] | |
sd = org_module.state_dict() | |
org_weight = sd["weight"] | |
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype) | |
sd["weight"] = org_weight + lora_weight | |
assert sd["weight"].shape == org_weight.shape | |
org_module.load_state_dict(sd) | |
org_module._lora_restored = False | |
lora.enabled = False | |
def apply_max_norm_regularization(self, max_norm_value, device): | |
downkeys = [] | |
upkeys = [] | |
alphakeys = [] | |
norms = [] | |
keys_scaled = 0 | |
state_dict = self.state_dict() | |
for key in state_dict.keys(): | |
if "lora_down" in key and "weight" in key: | |
downkeys.append(key) | |
upkeys.append(key.replace("lora_down", "lora_up")) | |
alphakeys.append(key.replace("lora_down.weight", "alpha")) | |
for i in range(len(downkeys)): | |
down = state_dict[downkeys[i]].to(device) | |
up = state_dict[upkeys[i]].to(device) | |
alpha = state_dict[alphakeys[i]].to(device) | |
dim = down.shape[0] | |
scale = alpha / dim | |
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): | |
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): | |
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) | |
else: | |
updown = up @ down | |
updown *= scale | |
norm = updown.norm().clamp(min=max_norm_value / 2) | |
desired = torch.clamp(norm, max=max_norm_value) | |
ratio = desired.cpu() / norm.cpu() | |
sqrt_ratio = ratio**0.5 | |
if ratio != 1: | |
keys_scaled += 1 | |
state_dict[upkeys[i]] *= sqrt_ratio | |
state_dict[downkeys[i]] *= sqrt_ratio | |
scalednorm = updown.norm() * ratio | |
norms.append(scalednorm.item()) | |
return keys_scaled, sum(norms) / len(norms), max(norms) | |