MakeAnything / networks /lora_flux.py
yiren98's picture
Upload 98 files
abd09b6 verified
# temporary minimum implementation of LoRA
# FLUX doesn't have Conv2d, so we ignore it
# TODO commonize with the original implementation
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import math
import os
from typing import Dict, List, Optional, Tuple, Type, Union
from diffusers import AutoencoderKL
from transformers import CLIPTextModel
import numpy as np
import torch
import re
from library.utils import setup_logging
from library.sdxl_original_unet import SdxlUNet2DConditionModel
setup_logging()
import logging
logger = logging.getLogger(__name__)
NUM_DOUBLE_BLOCKS = 19
NUM_SINGLE_BLOCKS = 38
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
split_dims: Optional[List[int]] = None,
):
"""
if alpha == 0 or None, alpha is rank (no scaling).
split_dims is used to mimic the split qkv of FLUX as same as Diffusers
"""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_dim = lora_dim
self.split_dims = split_dims
if split_dims is None:
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
else:
# conv2d not supported
assert sum(split_dims) == out_dim, "sum of split_dims must be equal to out_dim"
assert org_module.__class__.__name__ == "Linear", "split_dims is only supported for Linear"
# print(f"split_dims: {split_dims}")
self.lora_down = torch.nn.ModuleList(
[torch.nn.Linear(in_dim, self.lora_dim, bias=False) for _ in range(len(split_dims))]
)
self.lora_up = torch.nn.ModuleList([torch.nn.Linear(self.lora_dim, split_dim, bias=False) for split_dim in split_dims])
for lora_down in self.lora_down:
torch.nn.init.kaiming_uniform_(lora_down.weight, a=math.sqrt(5))
for lora_up in self.lora_up:
torch.nn.init.zeros_(lora_up.weight)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # ๅฎšๆ•ฐใจใ—ใฆๆ‰ฑใˆใ‚‹
# same as microsoft's
self.multiplier = multiplier
self.org_module = org_module # remove in applying
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
org_forwarded = self.org_forward(x)
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return org_forwarded
if self.split_dims is None:
lx = self.lora_down(x)
# normal dropout
if self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
# maskใ‹ใ‚‰่จˆ็ฎ—ใ™ใ‚‹ใ“ใจใ‚‚่€ƒใˆใ‚‰ใ‚Œใ‚‹ใŒใ€augmentation็š„ใชๅŠนๆžœใ‚’ๆœŸๅพ…ใ—ใฆrank_dropoutใ‚’็”จใ„ใ‚‹
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
return org_forwarded + lx * self.multiplier * scale
else:
lxs = [lora_down(x) for lora_down in self.lora_down]
# normal dropout
if self.dropout is not None and self.training:
lxs = [torch.nn.functional.dropout(lx, p=self.dropout) for lx in lxs]
# rank dropout
if self.rank_dropout is not None and self.training:
masks = [torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout for lx in lxs]
for i in range(len(lxs)):
if len(lx.size()) == 3:
masks[i] = masks[i].unsqueeze(1)
elif len(lx.size()) == 4:
masks[i] = masks[i].unsqueeze(-1).unsqueeze(-1)
lxs[i] = lxs[i] * masks[i]
# scaling for rank dropout: treat as if the rank is changed
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]
return org_forwarded + torch.cat(lxs, dim=-1) * self.multiplier * scale
class LoRAInfModule(LoRAModule):
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
**kwargs,
):
# no dropout for inference
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)
self.org_module_ref = [org_module] # ๅพŒใ‹ใ‚‰ๅ‚็…งใงใใ‚‹ใ‚ˆใ†ใซ
self.enabled = True
self.network: LoRANetwork = None
def set_network(self, network):
self.network = network
# freezeใ—ใฆใƒžใƒผใ‚ธใ™ใ‚‹
def merge_to(self, sd, dtype, device):
# extract weight from org_module
org_sd = self.org_module.state_dict()
weight = org_sd["weight"]
org_dtype = weight.dtype
org_device = weight.device
weight = weight.to(torch.float) # calc in float
if dtype is None:
dtype = org_dtype
if device is None:
device = org_device
if self.split_dims is None:
# get up/down weight
down_weight = sd["lora_down.weight"].to(torch.float).to(device)
up_weight = sd["lora_up.weight"].to(torch.float).to(device)
# merge weight
if len(weight.size()) == 2:
# linear
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# logger.info(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + self.multiplier * conved * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
else:
# split_dims
total_dims = sum(self.split_dims)
for i in range(len(self.split_dims)):
# get up/down weight
down_weight = sd[f"lora_down.{i}.weight"].to(torch.float).to(device) # (rank, in_dim)
up_weight = sd[f"lora_up.{i}.weight"].to(torch.float).to(device) # (split dim, rank)
# pad up_weight -> (total_dims, rank)
padded_up_weight = torch.zeros((total_dims, up_weight.size(0)), device=device, dtype=torch.float)
padded_up_weight[sum(self.split_dims[:i]) : sum(self.split_dims[: i + 1])] = up_weight
# merge weight
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
# ๅพฉๅ…ƒใงใใ‚‹ใƒžใƒผใ‚ธใฎใŸใ‚ใ€ใ“ใฎใƒขใ‚ธใƒฅใƒผใƒซใฎweightใ‚’่ฟ”ใ™
def get_weight(self, multiplier=None):
if multiplier is None:
multiplier = self.multiplier
# get up/down weight from module
up_weight = self.lora_up.weight.to(torch.float)
down_weight = self.lora_down.weight.to(torch.float)
# pre-calculated weight
if len(down_weight.size()) == 2:
# linear
weight = self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = self.multiplier * conved * self.scale
return weight
def set_region(self, region):
self.region = region
self.region_mask = None
def default_forward(self, x):
# logger.info(f"default_forward {self.lora_name} {x.size()}")
if self.split_dims is None:
lx = self.lora_down(x)
lx = self.lora_up(lx)
return self.org_forward(x) + lx * self.multiplier * self.scale
else:
lxs = [lora_down(x) for lora_down in self.lora_down]
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]
return self.org_forward(x) + torch.cat(lxs, dim=-1) * self.multiplier * self.scale
def forward(self, x):
if not self.enabled:
return self.org_forward(x)
return self.default_forward(x)
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
ae: AutoencoderKL,
text_encoders: List[CLIPTextModel],
flux,
neuron_dropout: Optional[float] = None,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
# attn dim, mlp dim: only for DoubleStreamBlock. SingleStreamBlock is not supported because of combined qkv
img_attn_dim = kwargs.get("img_attn_dim", None)
txt_attn_dim = kwargs.get("txt_attn_dim", None)
img_mlp_dim = kwargs.get("img_mlp_dim", None)
txt_mlp_dim = kwargs.get("txt_mlp_dim", None)
img_mod_dim = kwargs.get("img_mod_dim", None)
txt_mod_dim = kwargs.get("txt_mod_dim", None)
single_dim = kwargs.get("single_dim", None) # SingleStreamBlock
single_mod_dim = kwargs.get("single_mod_dim", None) # SingleStreamBlock
if img_attn_dim is not None:
img_attn_dim = int(img_attn_dim)
if txt_attn_dim is not None:
txt_attn_dim = int(txt_attn_dim)
if img_mlp_dim is not None:
img_mlp_dim = int(img_mlp_dim)
if txt_mlp_dim is not None:
txt_mlp_dim = int(txt_mlp_dim)
if img_mod_dim is not None:
img_mod_dim = int(img_mod_dim)
if txt_mod_dim is not None:
txt_mod_dim = int(txt_mod_dim)
if single_dim is not None:
single_dim = int(single_dim)
if single_mod_dim is not None:
single_mod_dim = int(single_mod_dim)
type_dims = [img_attn_dim, txt_attn_dim, img_mlp_dim, txt_mlp_dim, img_mod_dim, txt_mod_dim, single_dim, single_mod_dim]
if all([d is None for d in type_dims]):
type_dims = None
# in_dims [img, time, vector, guidance, txt]
in_dims = kwargs.get("in_dims", None)
if in_dims is not None:
in_dims = in_dims.strip()
if in_dims.startswith("[") and in_dims.endswith("]"):
in_dims = in_dims[1:-1]
in_dims = [int(d) for d in in_dims.split(",")] # is it better to use ast.literal_eval?
assert len(in_dims) == 5, f"invalid in_dims: {in_dims}, must be 5 dimensions (img, time, vector, guidance, txt)"
# double/single train blocks
def parse_block_selection(selection: str, total_blocks: int) -> List[bool]:
"""
Parse a block selection string and return a list of booleans.
Args:
selection (str): A string specifying which blocks to select.
total_blocks (int): The total number of blocks available.
Returns:
List[bool]: A list of booleans indicating which blocks are selected.
"""
if selection == "all":
return [True] * total_blocks
if selection == "none" or selection == "":
return [False] * total_blocks
selected = [False] * total_blocks
ranges = selection.split(",")
for r in ranges:
if "-" in r:
start, end = map(str.strip, r.split("-"))
start = int(start)
end = int(end)
assert 0 <= start < total_blocks, f"invalid start index: {start}"
assert 0 <= end < total_blocks, f"invalid end index: {end}"
assert start <= end, f"invalid range: {start}-{end}"
for i in range(start, end + 1):
selected[i] = True
else:
index = int(r)
assert 0 <= index < total_blocks, f"invalid index: {index}"
selected[index] = True
return selected
train_double_block_indices = kwargs.get("train_double_block_indices", None)
train_single_block_indices = kwargs.get("train_single_block_indices", None)
if train_double_block_indices is not None:
train_double_block_indices = parse_block_selection(train_double_block_indices, NUM_DOUBLE_BLOCKS)
if train_single_block_indices is not None:
train_single_block_indices = parse_block_selection(train_single_block_indices, NUM_SINGLE_BLOCKS)
# rank/module dropout
rank_dropout = kwargs.get("rank_dropout", None)
if rank_dropout is not None:
rank_dropout = float(rank_dropout)
module_dropout = kwargs.get("module_dropout", None)
if module_dropout is not None:
module_dropout = float(module_dropout)
# single or double blocks
train_blocks = kwargs.get("train_blocks", None) # None (default), "all" (same as None), "single", "double"
if train_blocks is not None:
assert train_blocks in ["all", "single", "double"], f"invalid train_blocks: {train_blocks}"
# split qkv
split_qkv = kwargs.get("split_qkv", False)
if split_qkv is not None:
split_qkv = True if split_qkv == "True" else False
# train T5XXL
train_t5xxl = kwargs.get("train_t5xxl", False)
if train_t5xxl is not None:
train_t5xxl = True if train_t5xxl == "True" else False
# verbose
verbose = kwargs.get("verbose", False)
if verbose is not None:
verbose = True if verbose == "True" else False
# ใ™ใ”ใๅผ•ๆ•ฐใŒๅคšใ„ใช ( ^ฯ‰^)๏ฝฅ๏ฝฅ๏ฝฅ
network = LoRANetwork(
text_encoders,
flux,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
conv_lora_dim=conv_dim,
conv_alpha=conv_alpha,
train_blocks=train_blocks,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
type_dims=type_dims,
in_dims=in_dims,
train_double_block_indices=train_double_block_indices,
train_single_block_indices=train_single_block_indices,
verbose=verbose,
)
loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None)
loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None)
loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None)
loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None
loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None
loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None
if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None:
network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio)
return network
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, ae, text_encoders, flux, weights_sd=None, for_inference=False, **kwargs):
# if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping, and train t5xxl
modules_dim = {}
modules_alpha = {}
train_t5xxl = None
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# logger.info(lora_name, value.size(), dim)
if train_t5xxl is None or train_t5xxl is False:
train_t5xxl = "lora_te3" in lora_name
if train_t5xxl is None:
train_t5xxl = False
# # split qkv
# double_qkv_rank = None
# single_qkv_rank = None
# rank = None
# for lora_name, dim in modules_dim.items():
# if "double" in lora_name and "qkv" in lora_name:
# double_qkv_rank = dim
# elif "single" in lora_name and "linear1" in lora_name:
# single_qkv_rank = dim
# elif rank is None:
# rank = dim
# if double_qkv_rank is not None and single_qkv_rank is not None and rank is not None:
# break
# split_qkv = (double_qkv_rank is not None and double_qkv_rank != rank) or (
# single_qkv_rank is not None and single_qkv_rank != rank
# )
split_qkv = False # split_qkv is not needed to care, because state_dict is qkv combined
module_class = LoRAInfModule if for_inference else LoRAModule
network = LoRANetwork(
text_encoders,
flux,
multiplier=multiplier,
modules_dim=modules_dim,
modules_alpha=modules_alpha,
module_class=module_class,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
)
return network, weights_sd
class LoRANetwork(torch.nn.Module):
# FLUX_TARGET_REPLACE_MODULE = ["DoubleStreamBlock", "SingleStreamBlock"]
FLUX_TARGET_REPLACE_MODULE_DOUBLE = ["DoubleStreamBlock"]
FLUX_TARGET_REPLACE_MODULE_SINGLE = ["SingleStreamBlock"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPSdpaAttention", "CLIPMLP", "T5Attention", "T5DenseGatedActDense"]
LORA_PREFIX_FLUX = "lora_unet" # make ComfyUI compatible
LORA_PREFIX_TEXT_ENCODER_CLIP = "lora_te1"
LORA_PREFIX_TEXT_ENCODER_T5 = "lora_te3" # make ComfyUI compatible
def __init__(
self,
text_encoders: Union[List[CLIPTextModel], CLIPTextModel],
unet,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
module_class: Type[object] = LoRAModule,
modules_dim: Optional[Dict[str, int]] = None,
modules_alpha: Optional[Dict[str, int]] = None,
train_blocks: Optional[str] = None,
split_qkv: bool = False,
train_t5xxl: bool = False,
type_dims: Optional[List[int]] = None,
in_dims: Optional[List[int]] = None,
train_double_block_indices: Optional[List[bool]] = None,
train_single_block_indices: Optional[List[bool]] = None,
verbose: Optional[bool] = False,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.train_blocks = train_blocks if train_blocks is not None else "all"
self.split_qkv = split_qkv
self.train_t5xxl = train_t5xxl
self.type_dims = type_dims
self.in_dims = in_dims
self.train_double_block_indices = train_double_block_indices
self.train_single_block_indices = train_single_block_indices
self.loraplus_lr_ratio = None
self.loraplus_unet_lr_ratio = None
self.loraplus_text_encoder_lr_ratio = None
if modules_dim is not None:
logger.info(f"create LoRA network from weights")
self.in_dims = [0] * 5 # create in_dims
# verbose = True
else:
logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
logger.info(
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}"
)
# if self.conv_lora_dim is not None:
# logger.info(
# f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}"
# )
if self.split_qkv:
logger.info(f"split qkv for LoRA")
if self.train_blocks is not None:
logger.info(f"train {self.train_blocks} blocks only")
if train_t5xxl:
logger.info(f"train T5XXL as well")
# create module instances
def create_modules(
is_flux: bool,
text_encoder_idx: Optional[int],
root_module: torch.nn.Module,
target_replace_modules: List[str],
filter: Optional[str] = None,
default_dim: Optional[int] = None,
) -> List[LoRAModule]:
prefix = (
self.LORA_PREFIX_FLUX
if is_flux
else (self.LORA_PREFIX_TEXT_ENCODER_CLIP if text_encoder_idx == 0 else self.LORA_PREFIX_TEXT_ENCODER_T5)
)
loras = []
skipped = []
for name, module in root_module.named_modules():
if target_replace_modules is None or module.__class__.__name__ in target_replace_modules:
if target_replace_modules is None: # dirty hack for all modules
module = root_module # search all modules
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + (name + "." if name else "") + child_name
lora_name = lora_name.replace(".", "_")
if filter is not None and not filter in lora_name:
continue
dim = None
alpha = None
if modules_dim is not None:
# ใƒขใ‚ธใƒฅใƒผใƒซๆŒ‡ๅฎšใ‚ใ‚Š
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
else:
# ้€šๅธธใ€ใ™ในใฆๅฏพ่ฑกใจใ™ใ‚‹
if is_linear or is_conv2d_1x1:
dim = default_dim if default_dim is not None else self.lora_dim
alpha = self.alpha
if is_flux and type_dims is not None:
identifier = [
("img_attn",),
("txt_attn",),
("img_mlp",),
("txt_mlp",),
("img_mod",),
("txt_mod",),
("single_blocks", "linear"),
("modulation",),
]
for i, d in enumerate(type_dims):
if d is not None and all([id in lora_name for id in identifier[i]]):
dim = d # may be 0 for skip
break
if (
is_flux
and dim
and (
self.train_double_block_indices is not None
or self.train_single_block_indices is not None
)
and ("double" in lora_name or "single" in lora_name)
):
# "lora_unet_double_blocks_0_..." or "lora_unet_single_blocks_0_..."
block_index = int(lora_name.split("_")[4]) # bit dirty
if (
"double" in lora_name
and self.train_double_block_indices is not None
and not self.train_double_block_indices[block_index]
):
dim = 0
elif (
"single" in lora_name
and self.train_single_block_indices is not None
and not self.train_single_block_indices[block_index]
):
dim = 0
elif self.conv_lora_dim is not None:
dim = self.conv_lora_dim
alpha = self.conv_alpha
if dim is None or dim == 0:
# skipใ—ใŸๆƒ…ๅ ฑใ‚’ๅ‡บๅŠ›
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None):
skipped.append(lora_name)
continue
# qkv split
split_dims = None
if is_flux and split_qkv:
if "double" in lora_name and "qkv" in lora_name:
split_dims = [3072] * 3
elif "single" in lora_name and "linear1" in lora_name:
split_dims = [3072] * 3 + [12288]
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
split_dims=split_dims,
)
loras.append(lora)
if target_replace_modules is None:
break # all modules are searched
return loras, skipped
# create LoRA for text encoder
# ๆฏŽๅ›žใ™ในใฆใฎใƒขใ‚ธใƒฅใƒผใƒซใ‚’ไฝœใ‚‹ใฎใฏ็„ก้ง„ใชใฎใง่ฆๆคœ่จŽ
self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = []
skipped_te = []
for i, text_encoder in enumerate(text_encoders):
index = i
if not train_t5xxl and index > 0: # 0: CLIP, 1: T5XXL, so we skip T5XXL if train_t5xxl is False
break
logger.info(f"create LoRA for Text Encoder {index+1}:")
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.")
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
# create LoRA for U-Net
if self.train_blocks == "all":
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE + LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE
elif self.train_blocks == "single":
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE
elif self.train_blocks == "double":
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE
self.unet_loras: List[Union[LoRAModule, LoRAInfModule]]
self.unet_loras, skipped_un = create_modules(True, None, unet, target_replace_modules)
# img, time, vector, guidance, txt
if self.in_dims:
for filter, in_dim in zip(["_img_in", "_time_in", "_vector_in", "_guidance_in", "_txt_in"], self.in_dims):
loras, _ = create_modules(True, None, unet, None, filter=filter, default_dim=in_dim)
self.unet_loras.extend(loras)
logger.info(f"create LoRA for FLUX {self.train_blocks} blocks: {len(self.unet_loras)} modules.")
if verbose:
for lora in self.unet_loras:
logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}")
skipped = skipped_te + skipped_un
if verbose and len(skipped) > 0:
logger.warning(
f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)ใŒ0ใฎ็‚บใ€ๆฌกใฎ{len(skipped)}ๅ€‹ใฎLoRAใƒขใ‚ธใƒฅใƒผใƒซใฏใ‚นใ‚ญใƒƒใƒ—ใ•ใ‚Œใพใ™:"
)
for name in skipped:
logger.info(f"\t{name}")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def set_enabled(self, is_enabled):
for lora in self.text_encoder_loras + self.unet_loras:
lora.enabled = is_enabled
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def load_state_dict(self, state_dict, strict=True):
# override to convert original weight to split qkv
if not self.split_qkv:
return super().load_state_dict(state_dict, strict)
# split qkv
for key in list(state_dict.keys()):
if "double" in key and "qkv" in key:
split_dims = [3072] * 3
elif "single" in key and "linear1" in key:
split_dims = [3072] * 3 + [12288]
else:
continue
weight = state_dict[key]
lora_name = key.split(".")[0]
if "lora_down" in key and "weight" in key:
# dense weight (rank*3, in_dim)
split_weight = torch.chunk(weight, len(split_dims), dim=0)
for i, split_w in enumerate(split_weight):
state_dict[f"{lora_name}.lora_down.{i}.weight"] = split_w
del state_dict[key]
# print(f"split {key}: {weight.shape} to {[w.shape for w in split_weight]}")
elif "lora_up" in key and "weight" in key:
# sparse weight (out_dim=sum(split_dims), rank*3)
rank = weight.size(1) // len(split_dims)
i = 0
for j in range(len(split_dims)):
state_dict[f"{lora_name}.lora_up.{j}.weight"] = weight[i : i + split_dims[j], j * rank : (j + 1) * rank]
i += split_dims[j]
del state_dict[key]
# # check is sparse
# i = 0
# is_zero = True
# for j in range(len(split_dims)):
# for k in range(len(split_dims)):
# if j == k:
# continue
# is_zero = is_zero and torch.all(weight[i : i + split_dims[j], k * rank : (k + 1) * rank] == 0)
# i += split_dims[j]
# if not is_zero:
# logger.warning(f"weight is not sparse: {key}")
# else:
# logger.info(f"weight is sparse: {key}")
# print(
# f"split {key}: {weight.shape} to {[state_dict[k].shape for k in [f'{lora_name}.lora_up.{j}.weight' for j in range(len(split_dims))]]}"
# )
# alpha is unchanged
return super().load_state_dict(state_dict, strict)
def state_dict(self, destination=None, prefix="", keep_vars=False):
if not self.split_qkv:
return super().state_dict(destination, prefix, keep_vars)
# merge qkv
state_dict = super().state_dict(destination, prefix, keep_vars)
new_state_dict = {}
for key in list(state_dict.keys()):
if "double" in key and "qkv" in key:
split_dims = [3072] * 3
elif "single" in key and "linear1" in key:
split_dims = [3072] * 3 + [12288]
else:
new_state_dict[key] = state_dict[key]
continue
if key not in state_dict:
continue # already merged
lora_name = key.split(".")[0]
# (rank, in_dim) * 3
down_weights = [state_dict.pop(f"{lora_name}.lora_down.{i}.weight") for i in range(len(split_dims))]
# (split dim, rank) * 3
up_weights = [state_dict.pop(f"{lora_name}.lora_up.{i}.weight") for i in range(len(split_dims))]
alpha = state_dict.pop(f"{lora_name}.alpha")
# merge down weight
down_weight = torch.cat(down_weights, dim=0) # (rank, split_dim) * 3 -> (rank*3, sum of split_dim)
# merge up weight (sum of split_dim, rank*3)
rank = up_weights[0].size(1)
up_weight = torch.zeros((sum(split_dims), down_weight.size(0)), device=down_weight.device, dtype=down_weight.dtype)
i = 0
for j in range(len(split_dims)):
up_weight[i : i + split_dims[j], j * rank : (j + 1) * rank] = up_weights[j]
i += split_dims[j]
new_state_dict[f"{lora_name}.lora_down.weight"] = down_weight
new_state_dict[f"{lora_name}.lora_up.weight"] = up_weight
new_state_dict[f"{lora_name}.alpha"] = alpha
# print(
# f"merged {lora_name}: {lora_name}, {[w.shape for w in down_weights]}, {[w.shape for w in up_weights]} to {down_weight.shape}, {up_weight.shape}"
# )
print(f"new key: {lora_name}.lora_down.weight, {lora_name}.lora_up.weight, {lora_name}.alpha")
return new_state_dict
def apply_to(self, text_encoders, flux, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
# ใƒžใƒผใ‚ธใงใใ‚‹ใ‹ใฉใ†ใ‹ใ‚’่ฟ”ใ™
def is_mergeable(self):
return True
# TODO refactor to common function with apply_to
def merge_to(self, text_encoders, flux, weights_sd, dtype=None, device=None):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP) or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5):
apply_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_FLUX):
apply_unet = True
if apply_text_encoder:
logger.info("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
logger.info(f"weights are merged")
def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio):
self.loraplus_lr_ratio = loraplus_lr_ratio
self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio
self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}")
logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}")
def prepare_optimizer_params_with_multiple_te_lrs(self, text_encoder_lr, unet_lr, default_lr):
# make sure text_encoder_lr as list of two elements
# if float, use the same value for both text encoders
if text_encoder_lr is None or (isinstance(text_encoder_lr, list) and len(text_encoder_lr) == 0):
text_encoder_lr = [default_lr, default_lr]
elif isinstance(text_encoder_lr, float) or isinstance(text_encoder_lr, int):
text_encoder_lr = [float(text_encoder_lr), float(text_encoder_lr)]
elif len(text_encoder_lr) == 1:
text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[0]]
self.requires_grad_(True)
all_params = []
lr_descriptions = []
def assemble_params(loras, lr, loraplus_ratio):
param_groups = {"lora": {}, "plus": {}}
for lora in loras:
for name, param in lora.named_parameters():
if loraplus_ratio is not None and "lora_up" in name:
param_groups["plus"][f"{lora.lora_name}.{name}"] = param
else:
param_groups["lora"][f"{lora.lora_name}.{name}"] = param
params = []
descriptions = []
for key in param_groups.keys():
param_data = {"params": param_groups[key].values()}
if len(param_data["params"]) == 0:
continue
if lr is not None:
if key == "plus":
param_data["lr"] = lr * loraplus_ratio
else:
param_data["lr"] = lr
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None:
logger.info("NO LR skipping!")
continue
params.append(param_data)
descriptions.append("plus" if key == "plus" else "")
return params, descriptions
if self.text_encoder_loras:
loraplus_lr_ratio = self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio
# split text encoder loras for te1 and te3
te1_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP)]
te3_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_T5)]
if len(te1_loras) > 0:
logger.info(f"Text Encoder 1 (CLIP-L): {len(te1_loras)} modules, LR {text_encoder_lr[0]}")
params, descriptions = assemble_params(te1_loras, text_encoder_lr[0], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions])
if len(te3_loras) > 0:
logger.info(f"Text Encoder 2 (T5XXL): {len(te3_loras)} modules, LR {text_encoder_lr[1]}")
params, descriptions = assemble_params(te3_loras, text_encoder_lr[1], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 2 " + (" " + d if d else "") for d in descriptions])
if self.unet_loras:
params, descriptions = assemble_params(
self.unet_loras,
unet_lr if unet_lr is not None else default_lr,
self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio,
)
all_params.extend(params)
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions])
return all_params, lr_descriptions
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from library import train_util
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def backup_weights(self):
# ้‡ใฟใฎใƒใƒƒใ‚ฏใ‚ขใƒƒใƒ—ใ‚’่กŒใ†
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not hasattr(org_module, "_lora_org_weight"):
sd = org_module.state_dict()
org_module._lora_org_weight = sd["weight"].detach().clone()
org_module._lora_restored = True
def restore_weights(self):
# ้‡ใฟใฎใƒชใ‚นใƒˆใ‚ขใ‚’่กŒใ†
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not org_module._lora_restored:
sd = org_module.state_dict()
sd["weight"] = org_module._lora_org_weight
org_module.load_state_dict(sd)
org_module._lora_restored = True
def pre_calculation(self):
# ไบ‹ๅ‰่จˆ็ฎ—ใ‚’่กŒใ†
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
sd = org_module.state_dict()
org_weight = sd["weight"]
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
sd["weight"] = org_weight + lora_weight
assert sd["weight"].shape == org_weight.shape
org_module.load_state_dict(sd)
org_module._lora_restored = False
lora.enabled = False
def apply_max_norm_regularization(self, max_norm_value, device):
downkeys = []
upkeys = []
alphakeys = []
norms = []
keys_scaled = 0
state_dict = self.state_dict()
for key in state_dict.keys():
if "lora_down" in key and "weight" in key:
downkeys.append(key)
upkeys.append(key.replace("lora_down", "lora_up"))
alphakeys.append(key.replace("lora_down.weight", "alpha"))
for i in range(len(downkeys)):
down = state_dict[downkeys[i]].to(device)
up = state_dict[upkeys[i]].to(device)
alpha = state_dict[alphakeys[i]].to(device)
dim = down.shape[0]
scale = alpha / dim
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown *= scale
norm = updown.norm().clamp(min=max_norm_value / 2)
desired = torch.clamp(norm, max=max_norm_value)
ratio = desired.cpu() / norm.cpu()
sqrt_ratio = ratio**0.5
if ratio != 1:
keys_scaled += 1
state_dict[upkeys[i]] *= sqrt_ratio
state_dict[downkeys[i]] *= sqrt_ratio
scalednorm = updown.norm() * ratio
norms.append(scalednorm.item())
return keys_scaled, sum(norms) / len(norms), max(norms)