MakeAnything / library /strategy_sdxl.py
yiren98's picture
Upload 98 files
abd09b6 verified
import os
from typing import Any, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
from library.strategy_base import TokenizeStrategy, TextEncodingStrategy, TextEncoderOutputsCachingStrategy
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
TOKENIZER1_PATH = "openai/clip-vit-large-patch14"
TOKENIZER2_PATH = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
class SdxlTokenizeStrategy(TokenizeStrategy):
def __init__(self, max_length: Optional[int], tokenizer_cache_dir: Optional[str] = None) -> None:
self.tokenizer1 = self._load_tokenizer(CLIPTokenizer, TOKENIZER1_PATH, tokenizer_cache_dir=tokenizer_cache_dir)
self.tokenizer2 = self._load_tokenizer(CLIPTokenizer, TOKENIZER2_PATH, tokenizer_cache_dir=tokenizer_cache_dir)
self.tokenizer2.pad_token_id = 0 # use 0 as pad token for tokenizer2
if max_length is None:
self.max_length = self.tokenizer1.model_max_length
else:
self.max_length = max_length + 2
def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]:
text = [text] if isinstance(text, str) else text
return (
torch.stack([self._get_input_ids(self.tokenizer1, t, self.max_length) for t in text], dim=0),
torch.stack([self._get_input_ids(self.tokenizer2, t, self.max_length) for t in text], dim=0),
)
def tokenize_with_weights(self, text: str | List[str]) -> Tuple[List[torch.Tensor]]:
text = [text] if isinstance(text, str) else text
tokens1_list, tokens2_list = [], []
weights1_list, weights2_list = [], []
for t in text:
tokens1, weights1 = self._get_input_ids(self.tokenizer1, t, self.max_length, weighted=True)
tokens2, weights2 = self._get_input_ids(self.tokenizer2, t, self.max_length, weighted=True)
tokens1_list.append(tokens1)
tokens2_list.append(tokens2)
weights1_list.append(weights1)
weights2_list.append(weights2)
return [torch.stack(tokens1_list, dim=0), torch.stack(tokens2_list, dim=0)], [
torch.stack(weights1_list, dim=0),
torch.stack(weights2_list, dim=0),
]
class SdxlTextEncodingStrategy(TextEncodingStrategy):
def __init__(self) -> None:
pass
def _pool_workaround(
self, text_encoder: CLIPTextModelWithProjection, last_hidden_state: torch.Tensor, input_ids: torch.Tensor, eos_token_id: int
):
r"""
workaround for CLIP's pooling bug: it returns the hidden states for the max token id as the pooled output
instead of the hidden states for the EOS token
If we use Textual Inversion, we need to use the hidden states for the EOS token as the pooled output
Original code from CLIP's pooling function:
\# text_embeds.shape = [batch_size, sequence_length, transformer.width]
\# take features from the eot embedding (eot_token is the highest number in each sequence)
\# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
]
"""
# input_ids: b*n,77
# find index for EOS token
# Following code is not working if one of the input_ids has multiple EOS tokens (very odd case)
# eos_token_index = torch.where(input_ids == eos_token_id)[1]
# eos_token_index = eos_token_index.to(device=last_hidden_state.device)
# Create a mask where the EOS tokens are
eos_token_mask = (input_ids == eos_token_id).int()
# Use argmax to find the last index of the EOS token for each element in the batch
eos_token_index = torch.argmax(eos_token_mask, dim=1) # this will be 0 if there is no EOS token, it's fine
eos_token_index = eos_token_index.to(device=last_hidden_state.device)
# get hidden states for EOS token
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), eos_token_index
]
# apply projection: projection may be of different dtype than last_hidden_state
pooled_output = text_encoder.text_projection(pooled_output.to(text_encoder.text_projection.weight.dtype))
pooled_output = pooled_output.to(last_hidden_state.dtype)
return pooled_output
def _get_hidden_states_sdxl(
self,
input_ids1: torch.Tensor,
input_ids2: torch.Tensor,
tokenizer1: CLIPTokenizer,
tokenizer2: CLIPTokenizer,
text_encoder1: Union[CLIPTextModel, torch.nn.Module],
text_encoder2: Union[CLIPTextModelWithProjection, torch.nn.Module],
unwrapped_text_encoder2: Optional[CLIPTextModelWithProjection] = None,
):
# input_ids: b,n,77 -> b*n, 77
b_size = input_ids1.size()[0]
if input_ids1.size()[1] == 1:
max_token_length = None
else:
max_token_length = input_ids1.size()[1] * input_ids1.size()[2]
input_ids1 = input_ids1.reshape((-1, tokenizer1.model_max_length)) # batch_size*n, 77
input_ids2 = input_ids2.reshape((-1, tokenizer2.model_max_length)) # batch_size*n, 77
input_ids1 = input_ids1.to(text_encoder1.device)
input_ids2 = input_ids2.to(text_encoder2.device)
# text_encoder1
enc_out = text_encoder1(input_ids1, output_hidden_states=True, return_dict=True)
hidden_states1 = enc_out["hidden_states"][11]
# text_encoder2
enc_out = text_encoder2(input_ids2, output_hidden_states=True, return_dict=True)
hidden_states2 = enc_out["hidden_states"][-2] # penuultimate layer
# pool2 = enc_out["text_embeds"]
unwrapped_text_encoder2 = unwrapped_text_encoder2 or text_encoder2
pool2 = self._pool_workaround(unwrapped_text_encoder2, enc_out["last_hidden_state"], input_ids2, tokenizer2.eos_token_id)
# b*n, 77, 768 or 1280 -> b, n*77, 768 or 1280
n_size = 1 if max_token_length is None else max_token_length // 75
hidden_states1 = hidden_states1.reshape((b_size, -1, hidden_states1.shape[-1]))
hidden_states2 = hidden_states2.reshape((b_size, -1, hidden_states2.shape[-1]))
if max_token_length is not None:
# bs*3, 77, 768 or 1024
# encoder1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
states_list = [hidden_states1[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, max_token_length, tokenizer1.model_max_length):
states_list.append(hidden_states1[:, i : i + tokenizer1.model_max_length - 2]) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states1[:, -1].unsqueeze(1)) # <EOS>
hidden_states1 = torch.cat(states_list, dim=1)
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
states_list = [hidden_states2[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, max_token_length, tokenizer2.model_max_length):
chunk = hidden_states2[:, i : i + tokenizer2.model_max_length - 2] # <BOS> の後から 最後の前まで
# this causes an error:
# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
# if i > 1:
# for j in range(len(chunk)): # batch_size
# if input_ids2[n_index + j * n_size, 1] == tokenizer2.eos_token_id: # 空、つまり <BOS> <EOS> <PAD> ...のパターン
# chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states2[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
hidden_states2 = torch.cat(states_list, dim=1)
# pool はnの最初のものを使う
pool2 = pool2[::n_size]
return hidden_states1, hidden_states2, pool2
def encode_tokens(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], tokens: List[torch.Tensor]
) -> List[torch.Tensor]:
"""
Args:
tokenize_strategy: TokenizeStrategy
models: List of models, [text_encoder1, text_encoder2, unwrapped text_encoder2 (optional)].
If text_encoder2 is wrapped by accelerate, unwrapped_text_encoder2 is required
tokens: List of tokens, for text_encoder1 and text_encoder2
"""
if len(models) == 2:
text_encoder1, text_encoder2 = models
unwrapped_text_encoder2 = None
else:
text_encoder1, text_encoder2, unwrapped_text_encoder2 = models
tokens1, tokens2 = tokens
sdxl_tokenize_strategy = tokenize_strategy # type: SdxlTokenizeStrategy
tokenizer1, tokenizer2 = sdxl_tokenize_strategy.tokenizer1, sdxl_tokenize_strategy.tokenizer2
hidden_states1, hidden_states2, pool2 = self._get_hidden_states_sdxl(
tokens1, tokens2, tokenizer1, tokenizer2, text_encoder1, text_encoder2, unwrapped_text_encoder2
)
return [hidden_states1, hidden_states2, pool2]
def encode_tokens_with_weights(
self,
tokenize_strategy: TokenizeStrategy,
models: List[Any],
tokens_list: List[torch.Tensor],
weights_list: List[torch.Tensor],
) -> List[torch.Tensor]:
hidden_states1, hidden_states2, pool2 = self.encode_tokens(tokenize_strategy, models, tokens_list)
weights_list = [weights.to(hidden_states1.device) for weights in weights_list]
# apply weights
if weights_list[0].shape[1] == 1: # no max_token_length
# weights: ((b, 1, 77), (b, 1, 77)), hidden_states: (b, 77, 768), (b, 77, 768)
hidden_states1 = hidden_states1 * weights_list[0].squeeze(1).unsqueeze(2)
hidden_states2 = hidden_states2 * weights_list[1].squeeze(1).unsqueeze(2)
else:
# weights: ((b, n, 77), (b, n, 77)), hidden_states: (b, n*75+2, 768), (b, n*75+2, 768)
for weight, hidden_states in zip(weights_list, [hidden_states1, hidden_states2]):
for i in range(weight.shape[1]):
hidden_states[:, i * 75 + 1 : i * 75 + 76] = hidden_states[:, i * 75 + 1 : i * 75 + 76] * weight[
:, i, 1:-1
].unsqueeze(-1)
return [hidden_states1, hidden_states2, pool2]
class SdxlTextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy):
SDXL_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_te_outputs.npz"
def __init__(
self,
cache_to_disk: bool,
batch_size: int,
skip_disk_cache_validity_check: bool,
is_partial: bool = False,
is_weighted: bool = False,
) -> None:
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial, is_weighted)
def get_outputs_npz_path(self, image_abs_path: str) -> str:
return os.path.splitext(image_abs_path)[0] + SdxlTextEncoderOutputsCachingStrategy.SDXL_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX
def is_disk_cached_outputs_expected(self, npz_path: str):
if not self.cache_to_disk:
return False
if not os.path.exists(npz_path):
return False
if self.skip_disk_cache_validity_check:
return True
try:
npz = np.load(npz_path)
if "hidden_state1" not in npz or "hidden_state2" not in npz or "pool2" not in npz:
return False
except Exception as e:
logger.error(f"Error loading file: {npz_path}")
raise e
return True
def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]:
data = np.load(npz_path)
hidden_state1 = data["hidden_state1"]
hidden_state2 = data["hidden_state2"]
pool2 = data["pool2"]
return [hidden_state1, hidden_state2, pool2]
def cache_batch_outputs(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List
):
sdxl_text_encoding_strategy = text_encoding_strategy # type: SdxlTextEncodingStrategy
captions = [info.caption for info in infos]
if self.is_weighted:
tokens_list, weights_list = tokenize_strategy.tokenize_with_weights(captions)
with torch.no_grad():
hidden_state1, hidden_state2, pool2 = sdxl_text_encoding_strategy.encode_tokens_with_weights(
tokenize_strategy, models, tokens_list, weights_list
)
else:
tokens1, tokens2 = tokenize_strategy.tokenize(captions)
with torch.no_grad():
hidden_state1, hidden_state2, pool2 = sdxl_text_encoding_strategy.encode_tokens(
tokenize_strategy, models, [tokens1, tokens2]
)
if hidden_state1.dtype == torch.bfloat16:
hidden_state1 = hidden_state1.float()
if hidden_state2.dtype == torch.bfloat16:
hidden_state2 = hidden_state2.float()
if pool2.dtype == torch.bfloat16:
pool2 = pool2.float()
hidden_state1 = hidden_state1.cpu().numpy()
hidden_state2 = hidden_state2.cpu().numpy()
pool2 = pool2.cpu().numpy()
for i, info in enumerate(infos):
hidden_state1_i = hidden_state1[i]
hidden_state2_i = hidden_state2[i]
pool2_i = pool2[i]
if self.cache_to_disk:
np.savez(
info.text_encoder_outputs_npz,
hidden_state1=hidden_state1_i,
hidden_state2=hidden_state2_i,
pool2=pool2_i,
)
else:
info.text_encoder_outputs = [hidden_state1_i, hidden_state2_i, pool2_i]