MakeAnything / library /strategy_base.py
yiren98's picture
Upload 98 files
abd09b6 verified
# base class for platform strategies. this file defines the interface for strategies
import os
import re
from typing import Any, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
# TODO remove circular import by moving ImageInfo to a separate file
# from library.train_util import ImageInfo
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
class TokenizeStrategy:
_strategy = None # strategy instance: actual strategy class
_re_attention = re.compile(
r"""\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""",
re.X,
)
@classmethod
def set_strategy(cls, strategy):
if cls._strategy is not None:
raise RuntimeError(f"Internal error. {cls.__name__} strategy is already set")
cls._strategy = strategy
@classmethod
def get_strategy(cls) -> Optional["TokenizeStrategy"]:
return cls._strategy
def _load_tokenizer(
self, model_class: Any, model_id: str, subfolder: Optional[str] = None, tokenizer_cache_dir: Optional[str] = None
) -> Any:
tokenizer = None
if tokenizer_cache_dir:
local_tokenizer_path = os.path.join(tokenizer_cache_dir, model_id.replace("/", "_"))
if os.path.exists(local_tokenizer_path):
logger.info(f"load tokenizer from cache: {local_tokenizer_path}")
tokenizer = model_class.from_pretrained(local_tokenizer_path) # same for v1 and v2
if tokenizer is None:
tokenizer = model_class.from_pretrained(model_id, subfolder=subfolder)
if tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
logger.info(f"save Tokenizer to cache: {local_tokenizer_path}")
tokenizer.save_pretrained(local_tokenizer_path)
return tokenizer
def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]:
raise NotImplementedError
def tokenize_with_weights(self, text: Union[str, List[str]]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""
returns: [tokens1, tokens2, ...], [weights1, weights2, ...]
"""
raise NotImplementedError
def _get_weighted_input_ids(
self, tokenizer: CLIPTokenizer, text: str, max_length: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
max_length includes starting and ending tokens.
"""
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\( - literal character '('
\[ - literal character '['
\) - literal character ')'
\] - literal character ']'
\\ - literal character '\'
anything else - just text
>>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
>>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
>>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
>>> parse_prompt_attention('\(literal\]')
[['(literal]', 1.0]]
>>> parse_prompt_attention('(unnecessary)(parens)')
[['unnecessaryparens', 1.1]]
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
"""
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in TokenizeStrategy._re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith("\\"):
res.append([text[1:], 1.0])
elif text == "(":
round_brackets.append(len(res))
elif text == "[":
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ")" and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == "]" and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
res.append([text, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def get_prompts_with_weights(text: str, max_length: int):
r"""
Tokenize a list of prompts and return its tokens with weights of each token. max_length does not include starting and ending token.
No padding, starting or ending token is included.
"""
truncated = False
texts_and_weights = parse_prompt_attention(text)
tokens = []
weights = []
for word, weight in texts_and_weights:
# tokenize and discard the starting and the ending token
token = tokenizer(word).input_ids[1:-1]
tokens += token
# copy the weight by length of token
weights += [weight] * len(token)
# stop if the text is too long (longer than truncation limit)
if len(tokens) > max_length:
truncated = True
break
# truncate
if len(tokens) > max_length:
truncated = True
tokens = tokens[:max_length]
weights = weights[:max_length]
if truncated:
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
return tokens, weights
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad):
r"""
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
"""
tokens = [bos] + tokens + [eos] + [pad] * (max_length - 2 - len(tokens))
weights = [1.0] + weights + [1.0] * (max_length - 1 - len(weights))
return tokens, weights
if max_length is None:
max_length = tokenizer.model_max_length
tokens, weights = get_prompts_with_weights(text, max_length - 2)
tokens, weights = pad_tokens_and_weights(
tokens, weights, max_length, tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id
)
return torch.tensor(tokens).unsqueeze(0), torch.tensor(weights).unsqueeze(0)
def _get_input_ids(
self, tokenizer: CLIPTokenizer, text: str, max_length: Optional[int] = None, weighted: bool = False
) -> torch.Tensor:
"""
for SD1.5/2.0/SDXL
TODO support batch input
"""
if max_length is None:
max_length = tokenizer.model_max_length - 2
if weighted:
input_ids, weights = self._get_weighted_input_ids(tokenizer, text, max_length)
else:
input_ids = tokenizer(text, padding="max_length", truncation=True, max_length=max_length, return_tensors="pt").input_ids
if max_length > tokenizer.model_max_length:
input_ids = input_ids.squeeze(0)
iids_list = []
if tokenizer.pad_token_id == tokenizer.eos_token_id:
# v1
# 77以上の時は "<BOS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<BOS>...<EOS>"の三連に変換する
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
for i in range(1, max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2): # (1, 152, 75)
ids_chunk = (
input_ids[0].unsqueeze(0),
input_ids[i : i + tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0),
)
ids_chunk = torch.cat(ids_chunk)
iids_list.append(ids_chunk)
else:
# v2 or SDXL
# 77以上の時は "<BOS> .... <EOS> <PAD> <PAD>..." でトータル227とかになっているので、"<BOS>...<EOS> <PAD> <PAD> ..."の三連に変換する
for i in range(1, max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2):
ids_chunk = (
input_ids[0].unsqueeze(0), # BOS
input_ids[i : i + tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0),
) # PAD or EOS
ids_chunk = torch.cat(ids_chunk)
# 末尾が <EOS> <PAD> または <PAD> <PAD> の場合は、何もしなくてよい
# 末尾が x <PAD/EOS> の場合は末尾を <EOS> に変える(x <EOS> なら結果的に変化なし)
if ids_chunk[-2] != tokenizer.eos_token_id and ids_chunk[-2] != tokenizer.pad_token_id:
ids_chunk[-1] = tokenizer.eos_token_id
# 先頭が <BOS> <PAD> ... の場合は <BOS> <EOS> <PAD> ... に変える
if ids_chunk[1] == tokenizer.pad_token_id:
ids_chunk[1] = tokenizer.eos_token_id
iids_list.append(ids_chunk)
input_ids = torch.stack(iids_list) # 3,77
if weighted:
weights = weights.squeeze(0)
new_weights = torch.ones(input_ids.shape)
for i in range(1, max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2):
b = i // (tokenizer.model_max_length - 2)
new_weights[b, 1 : 1 + tokenizer.model_max_length - 2] = weights[i : i + tokenizer.model_max_length - 2]
weights = new_weights
if weighted:
return input_ids, weights
return input_ids
class TextEncodingStrategy:
_strategy = None # strategy instance: actual strategy class
@classmethod
def set_strategy(cls, strategy):
if cls._strategy is not None:
raise RuntimeError(f"Internal error. {cls.__name__} strategy is already set")
cls._strategy = strategy
@classmethod
def get_strategy(cls) -> Optional["TextEncodingStrategy"]:
return cls._strategy
def encode_tokens(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], tokens: List[torch.Tensor]
) -> List[torch.Tensor]:
"""
Encode tokens into embeddings and outputs.
:param tokens: list of token tensors for each TextModel
:return: list of output embeddings for each architecture
"""
raise NotImplementedError
def encode_tokens_with_weights(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], tokens: List[torch.Tensor], weights: List[torch.Tensor]
) -> List[torch.Tensor]:
"""
Encode tokens into embeddings and outputs.
:param tokens: list of token tensors for each TextModel
:param weights: list of weight tensors for each TextModel
:return: list of output embeddings for each architecture
"""
raise NotImplementedError
class TextEncoderOutputsCachingStrategy:
_strategy = None # strategy instance: actual strategy class
def __init__(
self,
cache_to_disk: bool,
batch_size: Optional[int],
skip_disk_cache_validity_check: bool,
is_partial: bool = False,
is_weighted: bool = False,
) -> None:
self._cache_to_disk = cache_to_disk
self._batch_size = batch_size
self.skip_disk_cache_validity_check = skip_disk_cache_validity_check
self._is_partial = is_partial
self._is_weighted = is_weighted
@classmethod
def set_strategy(cls, strategy):
if cls._strategy is not None:
raise RuntimeError(f"Internal error. {cls.__name__} strategy is already set")
cls._strategy = strategy
@classmethod
def get_strategy(cls) -> Optional["TextEncoderOutputsCachingStrategy"]:
return cls._strategy
@property
def cache_to_disk(self):
return self._cache_to_disk
@property
def batch_size(self):
return self._batch_size
@property
def is_partial(self):
return self._is_partial
@property
def is_weighted(self):
return self._is_weighted
def get_outputs_npz_path(self, image_abs_path: str) -> str:
raise NotImplementedError
def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]:
raise NotImplementedError
def is_disk_cached_outputs_expected(self, npz_path: str) -> bool:
raise NotImplementedError
def cache_batch_outputs(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, batch: List
):
raise NotImplementedError
class LatentsCachingStrategy:
# TODO commonize utillity functions to this class, such as npz handling etc.
_strategy = None # strategy instance: actual strategy class
def __init__(self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None:
self._cache_to_disk = cache_to_disk
self._batch_size = batch_size
self.skip_disk_cache_validity_check = skip_disk_cache_validity_check
@classmethod
def set_strategy(cls, strategy):
if cls._strategy is not None:
raise RuntimeError(f"Internal error. {cls.__name__} strategy is already set")
cls._strategy = strategy
@classmethod
def get_strategy(cls) -> Optional["LatentsCachingStrategy"]:
return cls._strategy
@property
def cache_to_disk(self):
return self._cache_to_disk
@property
def batch_size(self):
return self._batch_size
@property
def cache_suffix(self):
raise NotImplementedError
def get_image_size_from_disk_cache_path(self, absolute_path: str, npz_path: str) -> Tuple[Optional[int], Optional[int]]:
w, h = os.path.splitext(npz_path)[0].split("_")[-2].split("x")
return int(w), int(h)
def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str:
raise NotImplementedError
def is_disk_cached_latents_expected(
self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool
) -> bool:
raise NotImplementedError
def cache_batch_latents(self, model: Any, batch: List, flip_aug: bool, alpha_mask: bool, random_crop: bool):
raise NotImplementedError
def _default_is_disk_cached_latents_expected(
self,
latents_stride: int,
bucket_reso: Tuple[int, int],
npz_path: str,
flip_aug: bool,
alpha_mask: bool,
multi_resolution: bool = False,
):
if not self.cache_to_disk:
return False
if not os.path.exists(npz_path):
return False
if self.skip_disk_cache_validity_check:
return True
expected_latents_size = (bucket_reso[1] // latents_stride, bucket_reso[0] // latents_stride) # bucket_reso is (W, H)
# e.g. "_32x64", HxW
key_reso_suffix = f"_{expected_latents_size[0]}x{expected_latents_size[1]}" if multi_resolution else ""
try:
npz = np.load(npz_path)
if "latents" + key_reso_suffix not in npz:
return False
if flip_aug and "latents_flipped" + key_reso_suffix not in npz:
return False
if alpha_mask and "alpha_mask" + key_reso_suffix not in npz:
return False
except Exception as e:
logger.error(f"Error loading file: {npz_path}")
raise e
return True
# TODO remove circular dependency for ImageInfo
def _default_cache_batch_latents(
self,
encode_by_vae,
vae_device,
vae_dtype,
image_infos: List,
flip_aug: bool,
alpha_mask: bool,
random_crop: bool,
multi_resolution: bool = False,
):
"""
Default implementation for cache_batch_latents. Image loading, VAE, flipping, alpha mask handling are common.
"""
from library import train_util # import here to avoid circular import
img_tensor, alpha_masks, original_sizes, crop_ltrbs = train_util.load_images_and_masks_for_caching(
image_infos, alpha_mask, random_crop
)
img_tensor = img_tensor.to(device=vae_device, dtype=vae_dtype)
with torch.no_grad():
latents_tensors = encode_by_vae(img_tensor).to("cpu")
if flip_aug:
img_tensor = torch.flip(img_tensor, dims=[3])
with torch.no_grad():
flipped_latents = encode_by_vae(img_tensor).to("cpu")
else:
flipped_latents = [None] * len(latents_tensors)
# for info, latents, flipped_latent, alpha_mask in zip(image_infos, latents_tensors, flipped_latents, alpha_masks):
for i in range(len(image_infos)):
info = image_infos[i]
latents = latents_tensors[i]
flipped_latent = flipped_latents[i]
alpha_mask = alpha_masks[i]
original_size = original_sizes[i]
crop_ltrb = crop_ltrbs[i]
latents_size = latents.shape[1:3] # H, W
key_reso_suffix = f"_{latents_size[0]}x{latents_size[1]}" if multi_resolution else "" # e.g. "_32x64", HxW
if self.cache_to_disk:
self.save_latents_to_disk(
info.latents_npz, latents, original_size, crop_ltrb, flipped_latent, alpha_mask, key_reso_suffix
)
else:
info.latents_original_size = original_size
info.latents_crop_ltrb = crop_ltrb
info.latents = latents
if flip_aug:
info.latents_flipped = flipped_latent
info.alpha_mask = alpha_mask
def load_latents_from_disk(
self, npz_path: str, bucket_reso: Tuple[int, int]
) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]:
"""
for SD/SDXL
"""
return self._default_load_latents_from_disk(None, npz_path, bucket_reso)
def _default_load_latents_from_disk(
self, latents_stride: Optional[int], npz_path: str, bucket_reso: Tuple[int, int]
) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]:
if latents_stride is None:
key_reso_suffix = ""
else:
latents_size = (bucket_reso[1] // latents_stride, bucket_reso[0] // latents_stride) # bucket_reso is (W, H)
key_reso_suffix = f"_{latents_size[0]}x{latents_size[1]}" # e.g. "_32x64", HxW
npz = np.load(npz_path)
if "latents" + key_reso_suffix not in npz:
raise ValueError(f"latents{key_reso_suffix} not found in {npz_path}")
latents = npz["latents" + key_reso_suffix]
original_size = npz["original_size" + key_reso_suffix].tolist()
crop_ltrb = npz["crop_ltrb" + key_reso_suffix].tolist()
flipped_latents = npz["latents_flipped" + key_reso_suffix] if "latents_flipped" + key_reso_suffix in npz else None
alpha_mask = npz["alpha_mask" + key_reso_suffix] if "alpha_mask" + key_reso_suffix in npz else None
return latents, original_size, crop_ltrb, flipped_latents, alpha_mask
def save_latents_to_disk(
self,
npz_path,
latents_tensor,
original_size,
crop_ltrb,
flipped_latents_tensor=None,
alpha_mask=None,
key_reso_suffix="",
):
kwargs = {}
if os.path.exists(npz_path):
# load existing npz and update it
npz = np.load(npz_path)
for key in npz.files:
kwargs[key] = npz[key]
kwargs["latents" + key_reso_suffix] = latents_tensor.float().cpu().numpy()
kwargs["original_size" + key_reso_suffix] = np.array(original_size)
kwargs["crop_ltrb" + key_reso_suffix] = np.array(crop_ltrb)
if flipped_latents_tensor is not None:
kwargs["latents_flipped" + key_reso_suffix] = flipped_latents_tensor.float().cpu().numpy()
if alpha_mask is not None:
kwargs["alpha_mask" + key_reso_suffix] = alpha_mask.float().cpu().numpy()
np.savez(npz_path, **kwargs)