Spaces:
Running
on
Zero
Running
on
Zero
# Modified from Diffusers to reduce VRAM usage | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block | |
from diffusers.models.vae import DecoderOutput, DiagonalGaussianDistribution | |
from diffusers.models.autoencoder_kl import AutoencoderKLOutput | |
from .utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
def slice_h(x, num_slices): | |
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d | |
# Conv2dのpaddingの副作用を排除するために、両側にpad 1しながらHをスライスする | |
# NCHWでもNHWCでもどちらでも動く | |
size = (x.shape[2] + num_slices - 1) // num_slices | |
sliced = [] | |
for i in range(num_slices): | |
if i == 0: | |
sliced.append(x[:, :, : size + 1, :]) | |
else: | |
end = size * (i + 1) + 1 | |
if x.shape[2] - end < 3: # if the last slice is too small, use the rest of the tensor 最後が細すぎるとconv2dできないので全部使う | |
end = x.shape[2] | |
sliced.append(x[:, :, size * i - 1 : end, :]) | |
if end >= x.shape[2]: | |
break | |
return sliced | |
def cat_h(sliced): | |
# padding分を除いて結合する | |
cat = [] | |
for i, x in enumerate(sliced): | |
if i == 0: | |
cat.append(x[:, :, :-1, :]) | |
elif i == len(sliced) - 1: | |
cat.append(x[:, :, 1:, :]) | |
else: | |
cat.append(x[:, :, 1:-1, :]) | |
del x | |
x = torch.cat(cat, dim=2) | |
return x | |
def resblock_forward(_self, num_slices, input_tensor, temb, **kwargs): | |
assert _self.upsample is None and _self.downsample is None | |
assert _self.norm1.num_groups == _self.norm2.num_groups | |
assert temb is None | |
# make sure norms are on cpu | |
org_device = input_tensor.device | |
cpu_device = torch.device("cpu") | |
_self.norm1.to(cpu_device) | |
_self.norm2.to(cpu_device) | |
# GroupNormがCPUでfp16で動かない対策 | |
org_dtype = input_tensor.dtype | |
if org_dtype == torch.float16: | |
_self.norm1.to(torch.float32) | |
_self.norm2.to(torch.float32) | |
# すべてのテンソルをCPUに移動する | |
input_tensor = input_tensor.to(cpu_device) | |
hidden_states = input_tensor | |
# どうもこれは結果が異なるようだ…… | |
# def sliced_norm1(norm, x): | |
# num_div = 4 if up_block_idx <= 2 else x.shape[1] // norm.num_groups | |
# sliced_tensor = torch.chunk(x, num_div, dim=1) | |
# sliced_weight = torch.chunk(norm.weight, num_div, dim=0) | |
# sliced_bias = torch.chunk(norm.bias, num_div, dim=0) | |
# logger.info(sliced_tensor[0].shape, num_div, sliced_weight[0].shape, sliced_bias[0].shape) | |
# normed_tensor = [] | |
# for i in range(num_div): | |
# n = torch.group_norm(sliced_tensor[i], norm.num_groups, sliced_weight[i], sliced_bias[i], norm.eps) | |
# normed_tensor.append(n) | |
# del n | |
# x = torch.cat(normed_tensor, dim=1) | |
# return num_div, x | |
# normを分割すると結果が変わるので、ここだけは分割しない。GPUで計算するとVRAMが足りなくなるので、CPUで計算する。幸いCPUでもそこまで遅くない | |
if org_dtype == torch.float16: | |
hidden_states = hidden_states.to(torch.float32) | |
hidden_states = _self.norm1(hidden_states) # run on cpu | |
if org_dtype == torch.float16: | |
hidden_states = hidden_states.to(torch.float16) | |
sliced = slice_h(hidden_states, num_slices) | |
del hidden_states | |
for i in range(len(sliced)): | |
x = sliced[i] | |
sliced[i] = None | |
# 計算する部分だけGPUに移動する、以下同様 | |
x = x.to(org_device) | |
x = _self.nonlinearity(x) | |
x = _self.conv1(x) | |
x = x.to(cpu_device) | |
sliced[i] = x | |
del x | |
hidden_states = cat_h(sliced) | |
del sliced | |
if org_dtype == torch.float16: | |
hidden_states = hidden_states.to(torch.float32) | |
hidden_states = _self.norm2(hidden_states) # run on cpu | |
if org_dtype == torch.float16: | |
hidden_states = hidden_states.to(torch.float16) | |
sliced = slice_h(hidden_states, num_slices) | |
del hidden_states | |
for i in range(len(sliced)): | |
x = sliced[i] | |
sliced[i] = None | |
x = x.to(org_device) | |
x = _self.nonlinearity(x) | |
x = _self.dropout(x) | |
x = _self.conv2(x) | |
x = x.to(cpu_device) | |
sliced[i] = x | |
del x | |
hidden_states = cat_h(sliced) | |
del sliced | |
# make shortcut | |
if _self.conv_shortcut is not None: | |
sliced = list(torch.chunk(input_tensor, num_slices, dim=2)) # no padding in conv_shortcut パディングがないので普通にスライスする | |
del input_tensor | |
for i in range(len(sliced)): | |
x = sliced[i] | |
sliced[i] = None | |
x = x.to(org_device) | |
x = _self.conv_shortcut(x) | |
x = x.to(cpu_device) | |
sliced[i] = x | |
del x | |
input_tensor = torch.cat(sliced, dim=2) | |
del sliced | |
output_tensor = (input_tensor + hidden_states) / _self.output_scale_factor | |
output_tensor = output_tensor.to(org_device) # 次のレイヤーがGPUで計算する | |
return output_tensor | |
class SlicingEncoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=("DownEncoderBlock2D",), | |
block_out_channels=(64,), | |
layers_per_block=2, | |
norm_num_groups=32, | |
act_fn="silu", | |
double_z=True, | |
num_slices=2, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) | |
self.mid_block = None | |
self.down_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=self.layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
add_downsample=not is_final_block, | |
resnet_eps=1e-6, | |
downsample_padding=0, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=output_channel, | |
temb_channels=None, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=None, | |
) | |
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
conv_out_channels = 2 * out_channels if double_z else out_channels | |
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) | |
# replace forward of ResBlocks | |
def wrapper(func, module, num_slices): | |
def forward(*args, **kwargs): | |
return func(module, num_slices, *args, **kwargs) | |
return forward | |
self.num_slices = num_slices | |
div = num_slices / (2 ** (len(self.down_blocks) - 1)) # 深い層はそこまで分割しなくていいので適宜減らす | |
# logger.info(f"initial divisor: {div}") | |
if div >= 2: | |
div = int(div) | |
for resnet in self.mid_block.resnets: | |
resnet.forward = wrapper(resblock_forward, resnet, div) | |
# midblock doesn't have downsample | |
for i, down_block in enumerate(self.down_blocks[::-1]): | |
if div >= 2: | |
div = int(div) | |
# logger.info(f"down block: {i} divisor: {div}") | |
for resnet in down_block.resnets: | |
resnet.forward = wrapper(resblock_forward, resnet, div) | |
if down_block.downsamplers is not None: | |
# logger.info("has downsample") | |
for downsample in down_block.downsamplers: | |
downsample.forward = wrapper(self.downsample_forward, downsample, div * 2) | |
div *= 2 | |
def forward(self, x): | |
sample = x | |
del x | |
org_device = sample.device | |
cpu_device = torch.device("cpu") | |
# sample = self.conv_in(sample) | |
sample = sample.to(cpu_device) | |
sliced = slice_h(sample, self.num_slices) | |
del sample | |
for i in range(len(sliced)): | |
x = sliced[i] | |
sliced[i] = None | |
x = x.to(org_device) | |
x = self.conv_in(x) | |
x = x.to(cpu_device) | |
sliced[i] = x | |
del x | |
sample = cat_h(sliced) | |
del sliced | |
sample = sample.to(org_device) | |
# down | |
for down_block in self.down_blocks: | |
sample = down_block(sample) | |
# middle | |
sample = self.mid_block(sample) | |
# post-process | |
# ここも省メモリ化したいが、恐らくそこまでメモリを食わないので省略 | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
def downsample_forward(self, _self, num_slices, hidden_states): | |
assert hidden_states.shape[1] == _self.channels | |
assert _self.use_conv and _self.padding == 0 | |
logger.info(f"downsample forward {num_slices} {hidden_states.shape}") | |
org_device = hidden_states.device | |
cpu_device = torch.device("cpu") | |
hidden_states = hidden_states.to(cpu_device) | |
pad = (0, 1, 0, 1) | |
hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0) | |
# slice with even number because of stride 2 | |
# strideが2なので偶数でスライスする | |
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d | |
size = (hidden_states.shape[2] + num_slices - 1) // num_slices | |
size = size + 1 if size % 2 == 1 else size | |
sliced = [] | |
for i in range(num_slices): | |
if i == 0: | |
sliced.append(hidden_states[:, :, : size + 1, :]) | |
else: | |
end = size * (i + 1) + 1 | |
if hidden_states.shape[2] - end < 4: # if the last slice is too small, use the rest of the tensor | |
end = hidden_states.shape[2] | |
sliced.append(hidden_states[:, :, size * i - 1 : end, :]) | |
if end >= hidden_states.shape[2]: | |
break | |
del hidden_states | |
for i in range(len(sliced)): | |
x = sliced[i] | |
sliced[i] = None | |
x = x.to(org_device) | |
x = _self.conv(x) | |
x = x.to(cpu_device) | |
# ここだけ雰囲気が違うのはCopilotのせい | |
if i == 0: | |
hidden_states = x | |
else: | |
hidden_states = torch.cat([hidden_states, x], dim=2) | |
hidden_states = hidden_states.to(org_device) | |
# logger.info(f"downsample forward done {hidden_states.shape}") | |
return hidden_states | |
class SlicingDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=3, | |
out_channels=3, | |
up_block_types=("UpDecoderBlock2D",), | |
block_out_channels=(64,), | |
layers_per_block=2, | |
norm_num_groups=32, | |
act_fn="silu", | |
num_slices=2, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=None, | |
) | |
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=self.layers_per_block + 1, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
prev_output_channel=None, | |
add_upsample=not is_final_block, | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=output_channel, | |
temb_channels=None, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
# replace forward of ResBlocks | |
def wrapper(func, module, num_slices): | |
def forward(*args, **kwargs): | |
return func(module, num_slices, *args, **kwargs) | |
return forward | |
self.num_slices = num_slices | |
div = num_slices / (2 ** (len(self.up_blocks) - 1)) | |
logger.info(f"initial divisor: {div}") | |
if div >= 2: | |
div = int(div) | |
for resnet in self.mid_block.resnets: | |
resnet.forward = wrapper(resblock_forward, resnet, div) | |
# midblock doesn't have upsample | |
for i, up_block in enumerate(self.up_blocks): | |
if div >= 2: | |
div = int(div) | |
# logger.info(f"up block: {i} divisor: {div}") | |
for resnet in up_block.resnets: | |
resnet.forward = wrapper(resblock_forward, resnet, div) | |
if up_block.upsamplers is not None: | |
# logger.info("has upsample") | |
for upsample in up_block.upsamplers: | |
upsample.forward = wrapper(self.upsample_forward, upsample, div * 2) | |
div *= 2 | |
def forward(self, z): | |
sample = z | |
del z | |
sample = self.conv_in(sample) | |
# middle | |
sample = self.mid_block(sample) | |
# up | |
for i, up_block in enumerate(self.up_blocks): | |
sample = up_block(sample) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
# conv_out with slicing because of VRAM usage | |
# conv_outはとてもVRAM使うのでスライスして対応 | |
org_device = sample.device | |
cpu_device = torch.device("cpu") | |
sample = sample.to(cpu_device) | |
sliced = slice_h(sample, self.num_slices) | |
del sample | |
for i in range(len(sliced)): | |
x = sliced[i] | |
sliced[i] = None | |
x = x.to(org_device) | |
x = self.conv_out(x) | |
x = x.to(cpu_device) | |
sliced[i] = x | |
sample = cat_h(sliced) | |
del sliced | |
sample = sample.to(org_device) | |
return sample | |
def upsample_forward(self, _self, num_slices, hidden_states, output_size=None): | |
assert hidden_states.shape[1] == _self.channels | |
assert _self.use_conv_transpose == False and _self.use_conv | |
org_dtype = hidden_states.dtype | |
org_device = hidden_states.device | |
cpu_device = torch.device("cpu") | |
hidden_states = hidden_states.to(cpu_device) | |
sliced = slice_h(hidden_states, num_slices) | |
del hidden_states | |
for i in range(len(sliced)): | |
x = sliced[i] | |
sliced[i] = None | |
x = x.to(org_device) | |
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch | |
# https://github.com/pytorch/pytorch/issues/86679 | |
# PyTorch 2で直らないかね…… | |
if org_dtype == torch.bfloat16: | |
x = x.to(torch.float32) | |
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
if org_dtype == torch.bfloat16: | |
x = x.to(org_dtype) | |
x = _self.conv(x) | |
# upsampleされてるのでpadは2になる | |
if i == 0: | |
x = x[:, :, :-2, :] | |
elif i == num_slices - 1: | |
x = x[:, :, 2:, :] | |
else: | |
x = x[:, :, 2:-2, :] | |
x = x.to(cpu_device) | |
sliced[i] = x | |
del x | |
hidden_states = torch.cat(sliced, dim=2) | |
# logger.info(f"us hidden_states {hidden_states.shape}") | |
del sliced | |
hidden_states = hidden_states.to(org_device) | |
return hidden_states | |
class SlicingAutoencoderKL(ModelMixin, ConfigMixin): | |
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma | |
and Max Welling. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the model (such as downloading or saving, etc.) | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to : | |
obj:`(64,)`): Tuple of block output channels. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space. | |
sample_size (`int`, *optional*, defaults to `32`): TODO | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), | |
block_out_channels: Tuple[int] = (64,), | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 4, | |
norm_num_groups: int = 32, | |
sample_size: int = 32, | |
num_slices: int = 16, | |
): | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = SlicingEncoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
double_z=True, | |
num_slices=num_slices, | |
) | |
# pass init params to Decoder | |
self.decoder = SlicingDecoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
norm_num_groups=norm_num_groups, | |
act_fn=act_fn, | |
num_slices=num_slices, | |
) | |
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) | |
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) | |
self.use_slicing = False | |
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
# これはバッチ方向のスライシング 紛らわしい | |
def enable_slicing(self): | |
r""" | |
Enable sliced VAE decoding. | |
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.use_slicing = True | |
def disable_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_slicing = False | |
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
if self.use_slicing and z.shape[0] > 1: | |
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
decoded = torch.cat(decoded_slices) | |
else: | |
decoded = self._decode(z).sample | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): Input sample. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |