Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import replace | |
import json | |
import os | |
from typing import List, Optional, Tuple, Union | |
import einops | |
import torch | |
from safetensors.torch import load_file | |
from safetensors import safe_open | |
from accelerate import init_empty_weights | |
from transformers import CLIPTextModel, CLIPConfig, T5EncoderModel, T5Config | |
from library.utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
from library import flux_models | |
from library.utils import load_safetensors | |
MODEL_VERSION_FLUX_V1 = "flux1" | |
MODEL_NAME_DEV = "dev" | |
MODEL_NAME_SCHNELL = "schnell" | |
def analyze_checkpoint_state(ckpt_path: str) -> Tuple[bool, bool, Tuple[int, int], List[str]]: | |
""" | |
チェックポイントの状態を分析し、DiffusersかBFLか、devかschnellか、ブロック数を計算して返す。 | |
Args: | |
ckpt_path (str): チェックポイントファイルまたはディレクトリのパス。 | |
Returns: | |
Tuple[bool, bool, Tuple[int, int], List[str]]: | |
- bool: Diffusersかどうかを示すフラグ。 | |
- bool: Schnellかどうかを示すフラグ。 | |
- Tuple[int, int]: ダブルブロックとシングルブロックの数。 | |
- List[str]: チェックポイントに含まれるキーのリスト。 | |
""" | |
# check the state dict: Diffusers or BFL, dev or schnell, number of blocks | |
logger.info(f"Checking the state dict: Diffusers or BFL, dev or schnell") | |
if os.path.isdir(ckpt_path): # if ckpt_path is a directory, it is Diffusers | |
ckpt_path = os.path.join(ckpt_path, "transformer", "diffusion_pytorch_model-00001-of-00003.safetensors") | |
if "00001-of-00003" in ckpt_path: | |
ckpt_paths = [ckpt_path.replace("00001-of-00003", f"0000{i}-of-00003") for i in range(1, 4)] | |
else: | |
ckpt_paths = [ckpt_path] | |
keys = [] | |
for ckpt_path in ckpt_paths: | |
with safe_open(ckpt_path, framework="pt") as f: | |
keys.extend(f.keys()) | |
# if the key has annoying prefix, remove it | |
if keys[0].startswith("model.diffusion_model."): | |
keys = [key.replace("model.diffusion_model.", "") for key in keys] | |
is_diffusers = "transformer_blocks.0.attn.add_k_proj.bias" in keys | |
is_schnell = not ("guidance_in.in_layer.bias" in keys or "time_text_embed.guidance_embedder.linear_1.bias" in keys) | |
# check number of double and single blocks | |
if not is_diffusers: | |
max_double_block_index = max( | |
[int(key.split(".")[1]) for key in keys if key.startswith("double_blocks.") and key.endswith(".img_attn.proj.bias")] | |
) | |
max_single_block_index = max( | |
[int(key.split(".")[1]) for key in keys if key.startswith("single_blocks.") and key.endswith(".modulation.lin.bias")] | |
) | |
else: | |
max_double_block_index = max( | |
[ | |
int(key.split(".")[1]) | |
for key in keys | |
if key.startswith("transformer_blocks.") and key.endswith(".attn.add_k_proj.bias") | |
] | |
) | |
max_single_block_index = max( | |
[ | |
int(key.split(".")[1]) | |
for key in keys | |
if key.startswith("single_transformer_blocks.") and key.endswith(".attn.to_k.bias") | |
] | |
) | |
num_double_blocks = max_double_block_index + 1 | |
num_single_blocks = max_single_block_index + 1 | |
return is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths | |
def load_flow_model( | |
ckpt_path: str, dtype: Optional[torch.dtype], device: Union[str, torch.device], disable_mmap: bool = False | |
) -> Tuple[bool, flux_models.Flux]: | |
is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths = analyze_checkpoint_state(ckpt_path) | |
name = MODEL_NAME_DEV if not is_schnell else MODEL_NAME_SCHNELL | |
# build model | |
logger.info(f"Building Flux model {name} from {'Diffusers' if is_diffusers else 'BFL'} checkpoint") | |
with torch.device("meta"): | |
params = flux_models.configs[name].params | |
# set the number of blocks | |
if params.depth != num_double_blocks: | |
logger.info(f"Setting the number of double blocks from {params.depth} to {num_double_blocks}") | |
params = replace(params, depth=num_double_blocks) | |
if params.depth_single_blocks != num_single_blocks: | |
logger.info(f"Setting the number of single blocks from {params.depth_single_blocks} to {num_single_blocks}") | |
params = replace(params, depth_single_blocks=num_single_blocks) | |
model = flux_models.Flux(params) | |
if dtype is not None: | |
model = model.to(dtype) | |
# load_sft doesn't support torch.device | |
logger.info(f"Loading state dict from {ckpt_path}") | |
sd = {} | |
for ckpt_path in ckpt_paths: | |
sd.update(load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)) | |
# convert Diffusers to BFL | |
if is_diffusers: | |
logger.info("Converting Diffusers to BFL") | |
sd = convert_diffusers_sd_to_bfl(sd, num_double_blocks, num_single_blocks) | |
logger.info("Converted Diffusers to BFL") | |
# if the key has annoying prefix, remove it | |
for key in list(sd.keys()): | |
new_key = key.replace("model.diffusion_model.", "") | |
if new_key == key: | |
break # the model doesn't have annoying prefix | |
sd[new_key] = sd.pop(key) | |
info = model.load_state_dict(sd, strict=False, assign=True) | |
logger.info(f"Loaded Flux: {info}") | |
return is_schnell, model | |
def load_ae( | |
ckpt_path: str, dtype: torch.dtype, device: Union[str, torch.device], disable_mmap: bool = False | |
) -> flux_models.AutoEncoder: | |
logger.info("Building AutoEncoder") | |
with torch.device("meta"): | |
# dev and schnell have the same AE params | |
ae = flux_models.AutoEncoder(flux_models.configs[MODEL_NAME_DEV].ae_params).to(dtype) | |
logger.info(f"Loading state dict from {ckpt_path}") | |
sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) | |
info = ae.load_state_dict(sd, strict=False, assign=True) | |
logger.info(f"Loaded AE: {info}") | |
return ae | |
def load_clip_l( | |
ckpt_path: Optional[str], | |
dtype: torch.dtype, | |
device: Union[str, torch.device], | |
disable_mmap: bool = False, | |
state_dict: Optional[dict] = None, | |
) -> CLIPTextModel: | |
logger.info("Building CLIP-L") | |
CLIPL_CONFIG = { | |
"_name_or_path": "clip-vit-large-patch14/", | |
"architectures": ["CLIPModel"], | |
"initializer_factor": 1.0, | |
"logit_scale_init_value": 2.6592, | |
"model_type": "clip", | |
"projection_dim": 768, | |
# "text_config": { | |
"_name_or_path": "", | |
"add_cross_attention": False, | |
"architectures": None, | |
"attention_dropout": 0.0, | |
"bad_words_ids": None, | |
"bos_token_id": 0, | |
"chunk_size_feed_forward": 0, | |
"cross_attention_hidden_size": None, | |
"decoder_start_token_id": None, | |
"diversity_penalty": 0.0, | |
"do_sample": False, | |
"dropout": 0.0, | |
"early_stopping": False, | |
"encoder_no_repeat_ngram_size": 0, | |
"eos_token_id": 2, | |
"finetuning_task": None, | |
"forced_bos_token_id": None, | |
"forced_eos_token_id": None, | |
"hidden_act": "quick_gelu", | |
"hidden_size": 768, | |
"id2label": {"0": "LABEL_0", "1": "LABEL_1"}, | |
"initializer_factor": 1.0, | |
"initializer_range": 0.02, | |
"intermediate_size": 3072, | |
"is_decoder": False, | |
"is_encoder_decoder": False, | |
"label2id": {"LABEL_0": 0, "LABEL_1": 1}, | |
"layer_norm_eps": 1e-05, | |
"length_penalty": 1.0, | |
"max_length": 20, | |
"max_position_embeddings": 77, | |
"min_length": 0, | |
"model_type": "clip_text_model", | |
"no_repeat_ngram_size": 0, | |
"num_attention_heads": 12, | |
"num_beam_groups": 1, | |
"num_beams": 1, | |
"num_hidden_layers": 12, | |
"num_return_sequences": 1, | |
"output_attentions": False, | |
"output_hidden_states": False, | |
"output_scores": False, | |
"pad_token_id": 1, | |
"prefix": None, | |
"problem_type": None, | |
"projection_dim": 768, | |
"pruned_heads": {}, | |
"remove_invalid_values": False, | |
"repetition_penalty": 1.0, | |
"return_dict": True, | |
"return_dict_in_generate": False, | |
"sep_token_id": None, | |
"task_specific_params": None, | |
"temperature": 1.0, | |
"tie_encoder_decoder": False, | |
"tie_word_embeddings": True, | |
"tokenizer_class": None, | |
"top_k": 50, | |
"top_p": 1.0, | |
"torch_dtype": None, | |
"torchscript": False, | |
"transformers_version": "4.16.0.dev0", | |
"use_bfloat16": False, | |
"vocab_size": 49408, | |
"hidden_act": "gelu", | |
"hidden_size": 1280, | |
"intermediate_size": 5120, | |
"num_attention_heads": 20, | |
"num_hidden_layers": 32, | |
# }, | |
# "text_config_dict": { | |
"hidden_size": 768, | |
"intermediate_size": 3072, | |
"num_attention_heads": 12, | |
"num_hidden_layers": 12, | |
"projection_dim": 768, | |
# }, | |
# "torch_dtype": "float32", | |
# "transformers_version": None, | |
} | |
config = CLIPConfig(**CLIPL_CONFIG) | |
with init_empty_weights(): | |
clip = CLIPTextModel._from_config(config) | |
if state_dict is not None: | |
sd = state_dict | |
else: | |
logger.info(f"Loading state dict from {ckpt_path}") | |
sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) | |
info = clip.load_state_dict(sd, strict=False, assign=True) | |
logger.info(f"Loaded CLIP-L: {info}") | |
return clip | |
def load_t5xxl( | |
ckpt_path: str, | |
dtype: Optional[torch.dtype], | |
device: Union[str, torch.device], | |
disable_mmap: bool = False, | |
state_dict: Optional[dict] = None, | |
) -> T5EncoderModel: | |
T5_CONFIG_JSON = """ | |
{ | |
"architectures": [ | |
"T5EncoderModel" | |
], | |
"classifier_dropout": 0.0, | |
"d_ff": 10240, | |
"d_kv": 64, | |
"d_model": 4096, | |
"decoder_start_token_id": 0, | |
"dense_act_fn": "gelu_new", | |
"dropout_rate": 0.1, | |
"eos_token_id": 1, | |
"feed_forward_proj": "gated-gelu", | |
"initializer_factor": 1.0, | |
"is_encoder_decoder": true, | |
"is_gated_act": true, | |
"layer_norm_epsilon": 1e-06, | |
"model_type": "t5", | |
"num_decoder_layers": 24, | |
"num_heads": 64, | |
"num_layers": 24, | |
"output_past": true, | |
"pad_token_id": 0, | |
"relative_attention_max_distance": 128, | |
"relative_attention_num_buckets": 32, | |
"tie_word_embeddings": false, | |
"torch_dtype": "float16", | |
"transformers_version": "4.41.2", | |
"use_cache": true, | |
"vocab_size": 32128 | |
} | |
""" | |
config = json.loads(T5_CONFIG_JSON) | |
config = T5Config(**config) | |
with init_empty_weights(): | |
t5xxl = T5EncoderModel._from_config(config) | |
if state_dict is not None: | |
sd = state_dict | |
else: | |
logger.info(f"Loading state dict from {ckpt_path}") | |
sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) | |
info = t5xxl.load_state_dict(sd, strict=False, assign=True) | |
logger.info(f"Loaded T5xxl: {info}") | |
return t5xxl | |
def get_t5xxl_actual_dtype(t5xxl: T5EncoderModel) -> torch.dtype: | |
# nn.Embedding is the first layer, but it could be casted to bfloat16 or float32 | |
return t5xxl.encoder.block[0].layer[0].SelfAttention.q.weight.dtype | |
def prepare_img_ids(batch_size: int, packed_latent_height: int, packed_latent_width: int): | |
img_ids = torch.zeros(packed_latent_height, packed_latent_width, 3) | |
img_ids[..., 1] = img_ids[..., 1] + torch.arange(packed_latent_height)[:, None] | |
img_ids[..., 2] = img_ids[..., 2] + torch.arange(packed_latent_width)[None, :] | |
img_ids = einops.repeat(img_ids, "h w c -> b (h w) c", b=batch_size) | |
return img_ids | |
def unpack_latents(x: torch.Tensor, packed_latent_height: int, packed_latent_width: int) -> torch.Tensor: | |
""" | |
x: [b (h w) (c ph pw)] -> [b c (h ph) (w pw)], ph=2, pw=2 | |
""" | |
x = einops.rearrange(x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=packed_latent_height, w=packed_latent_width, ph=2, pw=2) | |
return x | |
def pack_latents(x: torch.Tensor) -> torch.Tensor: | |
""" | |
x: [b c (h ph) (w pw)] -> [b (h w) (c ph pw)], ph=2, pw=2 | |
""" | |
x = einops.rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
return x | |
# region Diffusers | |
NUM_DOUBLE_BLOCKS = 19 | |
NUM_SINGLE_BLOCKS = 38 | |
BFL_TO_DIFFUSERS_MAP = { | |
"time_in.in_layer.weight": ["time_text_embed.timestep_embedder.linear_1.weight"], | |
"time_in.in_layer.bias": ["time_text_embed.timestep_embedder.linear_1.bias"], | |
"time_in.out_layer.weight": ["time_text_embed.timestep_embedder.linear_2.weight"], | |
"time_in.out_layer.bias": ["time_text_embed.timestep_embedder.linear_2.bias"], | |
"vector_in.in_layer.weight": ["time_text_embed.text_embedder.linear_1.weight"], | |
"vector_in.in_layer.bias": ["time_text_embed.text_embedder.linear_1.bias"], | |
"vector_in.out_layer.weight": ["time_text_embed.text_embedder.linear_2.weight"], | |
"vector_in.out_layer.bias": ["time_text_embed.text_embedder.linear_2.bias"], | |
"guidance_in.in_layer.weight": ["time_text_embed.guidance_embedder.linear_1.weight"], | |
"guidance_in.in_layer.bias": ["time_text_embed.guidance_embedder.linear_1.bias"], | |
"guidance_in.out_layer.weight": ["time_text_embed.guidance_embedder.linear_2.weight"], | |
"guidance_in.out_layer.bias": ["time_text_embed.guidance_embedder.linear_2.bias"], | |
"txt_in.weight": ["context_embedder.weight"], | |
"txt_in.bias": ["context_embedder.bias"], | |
"img_in.weight": ["x_embedder.weight"], | |
"img_in.bias": ["x_embedder.bias"], | |
"double_blocks.().img_mod.lin.weight": ["norm1.linear.weight"], | |
"double_blocks.().img_mod.lin.bias": ["norm1.linear.bias"], | |
"double_blocks.().txt_mod.lin.weight": ["norm1_context.linear.weight"], | |
"double_blocks.().txt_mod.lin.bias": ["norm1_context.linear.bias"], | |
"double_blocks.().img_attn.qkv.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight"], | |
"double_blocks.().img_attn.qkv.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias"], | |
"double_blocks.().txt_attn.qkv.weight": ["attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight"], | |
"double_blocks.().txt_attn.qkv.bias": ["attn.add_q_proj.bias", "attn.add_k_proj.bias", "attn.add_v_proj.bias"], | |
"double_blocks.().img_attn.norm.query_norm.scale": ["attn.norm_q.weight"], | |
"double_blocks.().img_attn.norm.key_norm.scale": ["attn.norm_k.weight"], | |
"double_blocks.().txt_attn.norm.query_norm.scale": ["attn.norm_added_q.weight"], | |
"double_blocks.().txt_attn.norm.key_norm.scale": ["attn.norm_added_k.weight"], | |
"double_blocks.().img_mlp.0.weight": ["ff.net.0.proj.weight"], | |
"double_blocks.().img_mlp.0.bias": ["ff.net.0.proj.bias"], | |
"double_blocks.().img_mlp.2.weight": ["ff.net.2.weight"], | |
"double_blocks.().img_mlp.2.bias": ["ff.net.2.bias"], | |
"double_blocks.().txt_mlp.0.weight": ["ff_context.net.0.proj.weight"], | |
"double_blocks.().txt_mlp.0.bias": ["ff_context.net.0.proj.bias"], | |
"double_blocks.().txt_mlp.2.weight": ["ff_context.net.2.weight"], | |
"double_blocks.().txt_mlp.2.bias": ["ff_context.net.2.bias"], | |
"double_blocks.().img_attn.proj.weight": ["attn.to_out.0.weight"], | |
"double_blocks.().img_attn.proj.bias": ["attn.to_out.0.bias"], | |
"double_blocks.().txt_attn.proj.weight": ["attn.to_add_out.weight"], | |
"double_blocks.().txt_attn.proj.bias": ["attn.to_add_out.bias"], | |
"single_blocks.().modulation.lin.weight": ["norm.linear.weight"], | |
"single_blocks.().modulation.lin.bias": ["norm.linear.bias"], | |
"single_blocks.().linear1.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight"], | |
"single_blocks.().linear1.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", "proj_mlp.bias"], | |
"single_blocks.().linear2.weight": ["proj_out.weight"], | |
"single_blocks.().norm.query_norm.scale": ["attn.norm_q.weight"], | |
"single_blocks.().norm.key_norm.scale": ["attn.norm_k.weight"], | |
"single_blocks.().linear2.weight": ["proj_out.weight"], | |
"single_blocks.().linear2.bias": ["proj_out.bias"], | |
"final_layer.linear.weight": ["proj_out.weight"], | |
"final_layer.linear.bias": ["proj_out.bias"], | |
"final_layer.adaLN_modulation.1.weight": ["norm_out.linear.weight"], | |
"final_layer.adaLN_modulation.1.bias": ["norm_out.linear.bias"], | |
} | |
def make_diffusers_to_bfl_map(num_double_blocks: int, num_single_blocks: int) -> dict[str, tuple[int, str]]: | |
# make reverse map from diffusers map | |
diffusers_to_bfl_map = {} # key: diffusers_key, value: (index, bfl_key) | |
for b in range(num_double_blocks): | |
for key, weights in BFL_TO_DIFFUSERS_MAP.items(): | |
if key.startswith("double_blocks."): | |
block_prefix = f"transformer_blocks.{b}." | |
for i, weight in enumerate(weights): | |
diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}")) | |
for b in range(num_single_blocks): | |
for key, weights in BFL_TO_DIFFUSERS_MAP.items(): | |
if key.startswith("single_blocks."): | |
block_prefix = f"single_transformer_blocks.{b}." | |
for i, weight in enumerate(weights): | |
diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}")) | |
for key, weights in BFL_TO_DIFFUSERS_MAP.items(): | |
if not (key.startswith("double_blocks.") or key.startswith("single_blocks.")): | |
for i, weight in enumerate(weights): | |
diffusers_to_bfl_map[weight] = (i, key) | |
return diffusers_to_bfl_map | |
def convert_diffusers_sd_to_bfl( | |
diffusers_sd: dict[str, torch.Tensor], num_double_blocks: int = NUM_DOUBLE_BLOCKS, num_single_blocks: int = NUM_SINGLE_BLOCKS | |
) -> dict[str, torch.Tensor]: | |
diffusers_to_bfl_map = make_diffusers_to_bfl_map(num_double_blocks, num_single_blocks) | |
# iterate over three safetensors files to reduce memory usage | |
flux_sd = {} | |
for diffusers_key, tensor in diffusers_sd.items(): | |
if diffusers_key in diffusers_to_bfl_map: | |
index, bfl_key = diffusers_to_bfl_map[diffusers_key] | |
if bfl_key not in flux_sd: | |
flux_sd[bfl_key] = [] | |
flux_sd[bfl_key].append((index, tensor)) | |
else: | |
logger.error(f"Error: Key not found in diffusers_to_bfl_map: {diffusers_key}") | |
raise KeyError(f"Key not found in diffusers_to_bfl_map: {diffusers_key}") | |
# concat tensors if multiple tensors are mapped to a single key, sort by index | |
for key, values in flux_sd.items(): | |
if len(values) == 1: | |
flux_sd[key] = values[0][1] | |
else: | |
flux_sd[key] = torch.cat([value[1] for value in sorted(values, key=lambda x: x[0])]) | |
# special case for final_layer.adaLN_modulation.1.weight and final_layer.adaLN_modulation.1.bias | |
def swap_scale_shift(weight): | |
shift, scale = weight.chunk(2, dim=0) | |
new_weight = torch.cat([scale, shift], dim=0) | |
return new_weight | |
if "final_layer.adaLN_modulation.1.weight" in flux_sd: | |
flux_sd["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.weight"]) | |
if "final_layer.adaLN_modulation.1.bias" in flux_sd: | |
flux_sd["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.bias"]) | |
return flux_sd | |
# endregion | |