MakeAnything / library /flux_utils.py
yiren98's picture
Upload 98 files
abd09b6 verified
from dataclasses import replace
import json
import os
from typing import List, Optional, Tuple, Union
import einops
import torch
from safetensors.torch import load_file
from safetensors import safe_open
from accelerate import init_empty_weights
from transformers import CLIPTextModel, CLIPConfig, T5EncoderModel, T5Config
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
from library import flux_models
from library.utils import load_safetensors
MODEL_VERSION_FLUX_V1 = "flux1"
MODEL_NAME_DEV = "dev"
MODEL_NAME_SCHNELL = "schnell"
def analyze_checkpoint_state(ckpt_path: str) -> Tuple[bool, bool, Tuple[int, int], List[str]]:
"""
チェックポイントの状態を分析し、DiffusersかBFLか、devかschnellか、ブロック数を計算して返す。
Args:
ckpt_path (str): チェックポイントファイルまたはディレクトリのパス。
Returns:
Tuple[bool, bool, Tuple[int, int], List[str]]:
- bool: Diffusersかどうかを示すフラグ。
- bool: Schnellかどうかを示すフラグ。
- Tuple[int, int]: ダブルブロックとシングルブロックの数。
- List[str]: チェックポイントに含まれるキーのリスト。
"""
# check the state dict: Diffusers or BFL, dev or schnell, number of blocks
logger.info(f"Checking the state dict: Diffusers or BFL, dev or schnell")
if os.path.isdir(ckpt_path): # if ckpt_path is a directory, it is Diffusers
ckpt_path = os.path.join(ckpt_path, "transformer", "diffusion_pytorch_model-00001-of-00003.safetensors")
if "00001-of-00003" in ckpt_path:
ckpt_paths = [ckpt_path.replace("00001-of-00003", f"0000{i}-of-00003") for i in range(1, 4)]
else:
ckpt_paths = [ckpt_path]
keys = []
for ckpt_path in ckpt_paths:
with safe_open(ckpt_path, framework="pt") as f:
keys.extend(f.keys())
# if the key has annoying prefix, remove it
if keys[0].startswith("model.diffusion_model."):
keys = [key.replace("model.diffusion_model.", "") for key in keys]
is_diffusers = "transformer_blocks.0.attn.add_k_proj.bias" in keys
is_schnell = not ("guidance_in.in_layer.bias" in keys or "time_text_embed.guidance_embedder.linear_1.bias" in keys)
# check number of double and single blocks
if not is_diffusers:
max_double_block_index = max(
[int(key.split(".")[1]) for key in keys if key.startswith("double_blocks.") and key.endswith(".img_attn.proj.bias")]
)
max_single_block_index = max(
[int(key.split(".")[1]) for key in keys if key.startswith("single_blocks.") and key.endswith(".modulation.lin.bias")]
)
else:
max_double_block_index = max(
[
int(key.split(".")[1])
for key in keys
if key.startswith("transformer_blocks.") and key.endswith(".attn.add_k_proj.bias")
]
)
max_single_block_index = max(
[
int(key.split(".")[1])
for key in keys
if key.startswith("single_transformer_blocks.") and key.endswith(".attn.to_k.bias")
]
)
num_double_blocks = max_double_block_index + 1
num_single_blocks = max_single_block_index + 1
return is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths
def load_flow_model(
ckpt_path: str, dtype: Optional[torch.dtype], device: Union[str, torch.device], disable_mmap: bool = False
) -> Tuple[bool, flux_models.Flux]:
is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths = analyze_checkpoint_state(ckpt_path)
name = MODEL_NAME_DEV if not is_schnell else MODEL_NAME_SCHNELL
# build model
logger.info(f"Building Flux model {name} from {'Diffusers' if is_diffusers else 'BFL'} checkpoint")
with torch.device("meta"):
params = flux_models.configs[name].params
# set the number of blocks
if params.depth != num_double_blocks:
logger.info(f"Setting the number of double blocks from {params.depth} to {num_double_blocks}")
params = replace(params, depth=num_double_blocks)
if params.depth_single_blocks != num_single_blocks:
logger.info(f"Setting the number of single blocks from {params.depth_single_blocks} to {num_single_blocks}")
params = replace(params, depth_single_blocks=num_single_blocks)
model = flux_models.Flux(params)
if dtype is not None:
model = model.to(dtype)
# load_sft doesn't support torch.device
logger.info(f"Loading state dict from {ckpt_path}")
sd = {}
for ckpt_path in ckpt_paths:
sd.update(load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype))
# convert Diffusers to BFL
if is_diffusers:
logger.info("Converting Diffusers to BFL")
sd = convert_diffusers_sd_to_bfl(sd, num_double_blocks, num_single_blocks)
logger.info("Converted Diffusers to BFL")
# if the key has annoying prefix, remove it
for key in list(sd.keys()):
new_key = key.replace("model.diffusion_model.", "")
if new_key == key:
break # the model doesn't have annoying prefix
sd[new_key] = sd.pop(key)
info = model.load_state_dict(sd, strict=False, assign=True)
logger.info(f"Loaded Flux: {info}")
return is_schnell, model
def load_ae(
ckpt_path: str, dtype: torch.dtype, device: Union[str, torch.device], disable_mmap: bool = False
) -> flux_models.AutoEncoder:
logger.info("Building AutoEncoder")
with torch.device("meta"):
# dev and schnell have the same AE params
ae = flux_models.AutoEncoder(flux_models.configs[MODEL_NAME_DEV].ae_params).to(dtype)
logger.info(f"Loading state dict from {ckpt_path}")
sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
info = ae.load_state_dict(sd, strict=False, assign=True)
logger.info(f"Loaded AE: {info}")
return ae
def load_clip_l(
ckpt_path: Optional[str],
dtype: torch.dtype,
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[dict] = None,
) -> CLIPTextModel:
logger.info("Building CLIP-L")
CLIPL_CONFIG = {
"_name_or_path": "clip-vit-large-patch14/",
"architectures": ["CLIPModel"],
"initializer_factor": 1.0,
"logit_scale_init_value": 2.6592,
"model_type": "clip",
"projection_dim": 768,
# "text_config": {
"_name_or_path": "",
"add_cross_attention": False,
"architectures": None,
"attention_dropout": 0.0,
"bad_words_ids": None,
"bos_token_id": 0,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": None,
"decoder_start_token_id": None,
"diversity_penalty": 0.0,
"do_sample": False,
"dropout": 0.0,
"early_stopping": False,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"finetuning_task": None,
"forced_bos_token_id": None,
"forced_eos_token_id": None,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"id2label": {"0": "LABEL_0", "1": "LABEL_1"},
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": False,
"is_encoder_decoder": False,
"label2id": {"LABEL_0": 0, "LABEL_1": 1},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 77,
"min_length": 0,
"model_type": "clip_text_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": False,
"output_hidden_states": False,
"output_scores": False,
"pad_token_id": 1,
"prefix": None,
"problem_type": None,
"projection_dim": 768,
"pruned_heads": {},
"remove_invalid_values": False,
"repetition_penalty": 1.0,
"return_dict": True,
"return_dict_in_generate": False,
"sep_token_id": None,
"task_specific_params": None,
"temperature": 1.0,
"tie_encoder_decoder": False,
"tie_word_embeddings": True,
"tokenizer_class": None,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": None,
"torchscript": False,
"transformers_version": "4.16.0.dev0",
"use_bfloat16": False,
"vocab_size": 49408,
"hidden_act": "gelu",
"hidden_size": 1280,
"intermediate_size": 5120,
"num_attention_heads": 20,
"num_hidden_layers": 32,
# },
# "text_config_dict": {
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"projection_dim": 768,
# },
# "torch_dtype": "float32",
# "transformers_version": None,
}
config = CLIPConfig(**CLIPL_CONFIG)
with init_empty_weights():
clip = CLIPTextModel._from_config(config)
if state_dict is not None:
sd = state_dict
else:
logger.info(f"Loading state dict from {ckpt_path}")
sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
info = clip.load_state_dict(sd, strict=False, assign=True)
logger.info(f"Loaded CLIP-L: {info}")
return clip
def load_t5xxl(
ckpt_path: str,
dtype: Optional[torch.dtype],
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[dict] = None,
) -> T5EncoderModel:
T5_CONFIG_JSON = """
{
"architectures": [
"T5EncoderModel"
],
"classifier_dropout": 0.0,
"d_ff": 10240,
"d_kv": 64,
"d_model": 4096,
"decoder_start_token_id": 0,
"dense_act_fn": "gelu_new",
"dropout_rate": 0.1,
"eos_token_id": 1,
"feed_forward_proj": "gated-gelu",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 24,
"num_heads": 64,
"num_layers": 24,
"output_past": true,
"pad_token_id": 0,
"relative_attention_max_distance": 128,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.41.2",
"use_cache": true,
"vocab_size": 32128
}
"""
config = json.loads(T5_CONFIG_JSON)
config = T5Config(**config)
with init_empty_weights():
t5xxl = T5EncoderModel._from_config(config)
if state_dict is not None:
sd = state_dict
else:
logger.info(f"Loading state dict from {ckpt_path}")
sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
info = t5xxl.load_state_dict(sd, strict=False, assign=True)
logger.info(f"Loaded T5xxl: {info}")
return t5xxl
def get_t5xxl_actual_dtype(t5xxl: T5EncoderModel) -> torch.dtype:
# nn.Embedding is the first layer, but it could be casted to bfloat16 or float32
return t5xxl.encoder.block[0].layer[0].SelfAttention.q.weight.dtype
def prepare_img_ids(batch_size: int, packed_latent_height: int, packed_latent_width: int):
img_ids = torch.zeros(packed_latent_height, packed_latent_width, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(packed_latent_height)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(packed_latent_width)[None, :]
img_ids = einops.repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
return img_ids
def unpack_latents(x: torch.Tensor, packed_latent_height: int, packed_latent_width: int) -> torch.Tensor:
"""
x: [b (h w) (c ph pw)] -> [b c (h ph) (w pw)], ph=2, pw=2
"""
x = einops.rearrange(x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=packed_latent_height, w=packed_latent_width, ph=2, pw=2)
return x
def pack_latents(x: torch.Tensor) -> torch.Tensor:
"""
x: [b c (h ph) (w pw)] -> [b (h w) (c ph pw)], ph=2, pw=2
"""
x = einops.rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
return x
# region Diffusers
NUM_DOUBLE_BLOCKS = 19
NUM_SINGLE_BLOCKS = 38
BFL_TO_DIFFUSERS_MAP = {
"time_in.in_layer.weight": ["time_text_embed.timestep_embedder.linear_1.weight"],
"time_in.in_layer.bias": ["time_text_embed.timestep_embedder.linear_1.bias"],
"time_in.out_layer.weight": ["time_text_embed.timestep_embedder.linear_2.weight"],
"time_in.out_layer.bias": ["time_text_embed.timestep_embedder.linear_2.bias"],
"vector_in.in_layer.weight": ["time_text_embed.text_embedder.linear_1.weight"],
"vector_in.in_layer.bias": ["time_text_embed.text_embedder.linear_1.bias"],
"vector_in.out_layer.weight": ["time_text_embed.text_embedder.linear_2.weight"],
"vector_in.out_layer.bias": ["time_text_embed.text_embedder.linear_2.bias"],
"guidance_in.in_layer.weight": ["time_text_embed.guidance_embedder.linear_1.weight"],
"guidance_in.in_layer.bias": ["time_text_embed.guidance_embedder.linear_1.bias"],
"guidance_in.out_layer.weight": ["time_text_embed.guidance_embedder.linear_2.weight"],
"guidance_in.out_layer.bias": ["time_text_embed.guidance_embedder.linear_2.bias"],
"txt_in.weight": ["context_embedder.weight"],
"txt_in.bias": ["context_embedder.bias"],
"img_in.weight": ["x_embedder.weight"],
"img_in.bias": ["x_embedder.bias"],
"double_blocks.().img_mod.lin.weight": ["norm1.linear.weight"],
"double_blocks.().img_mod.lin.bias": ["norm1.linear.bias"],
"double_blocks.().txt_mod.lin.weight": ["norm1_context.linear.weight"],
"double_blocks.().txt_mod.lin.bias": ["norm1_context.linear.bias"],
"double_blocks.().img_attn.qkv.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight"],
"double_blocks.().img_attn.qkv.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias"],
"double_blocks.().txt_attn.qkv.weight": ["attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight"],
"double_blocks.().txt_attn.qkv.bias": ["attn.add_q_proj.bias", "attn.add_k_proj.bias", "attn.add_v_proj.bias"],
"double_blocks.().img_attn.norm.query_norm.scale": ["attn.norm_q.weight"],
"double_blocks.().img_attn.norm.key_norm.scale": ["attn.norm_k.weight"],
"double_blocks.().txt_attn.norm.query_norm.scale": ["attn.norm_added_q.weight"],
"double_blocks.().txt_attn.norm.key_norm.scale": ["attn.norm_added_k.weight"],
"double_blocks.().img_mlp.0.weight": ["ff.net.0.proj.weight"],
"double_blocks.().img_mlp.0.bias": ["ff.net.0.proj.bias"],
"double_blocks.().img_mlp.2.weight": ["ff.net.2.weight"],
"double_blocks.().img_mlp.2.bias": ["ff.net.2.bias"],
"double_blocks.().txt_mlp.0.weight": ["ff_context.net.0.proj.weight"],
"double_blocks.().txt_mlp.0.bias": ["ff_context.net.0.proj.bias"],
"double_blocks.().txt_mlp.2.weight": ["ff_context.net.2.weight"],
"double_blocks.().txt_mlp.2.bias": ["ff_context.net.2.bias"],
"double_blocks.().img_attn.proj.weight": ["attn.to_out.0.weight"],
"double_blocks.().img_attn.proj.bias": ["attn.to_out.0.bias"],
"double_blocks.().txt_attn.proj.weight": ["attn.to_add_out.weight"],
"double_blocks.().txt_attn.proj.bias": ["attn.to_add_out.bias"],
"single_blocks.().modulation.lin.weight": ["norm.linear.weight"],
"single_blocks.().modulation.lin.bias": ["norm.linear.bias"],
"single_blocks.().linear1.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight"],
"single_blocks.().linear1.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", "proj_mlp.bias"],
"single_blocks.().linear2.weight": ["proj_out.weight"],
"single_blocks.().norm.query_norm.scale": ["attn.norm_q.weight"],
"single_blocks.().norm.key_norm.scale": ["attn.norm_k.weight"],
"single_blocks.().linear2.weight": ["proj_out.weight"],
"single_blocks.().linear2.bias": ["proj_out.bias"],
"final_layer.linear.weight": ["proj_out.weight"],
"final_layer.linear.bias": ["proj_out.bias"],
"final_layer.adaLN_modulation.1.weight": ["norm_out.linear.weight"],
"final_layer.adaLN_modulation.1.bias": ["norm_out.linear.bias"],
}
def make_diffusers_to_bfl_map(num_double_blocks: int, num_single_blocks: int) -> dict[str, tuple[int, str]]:
# make reverse map from diffusers map
diffusers_to_bfl_map = {} # key: diffusers_key, value: (index, bfl_key)
for b in range(num_double_blocks):
for key, weights in BFL_TO_DIFFUSERS_MAP.items():
if key.startswith("double_blocks."):
block_prefix = f"transformer_blocks.{b}."
for i, weight in enumerate(weights):
diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}"))
for b in range(num_single_blocks):
for key, weights in BFL_TO_DIFFUSERS_MAP.items():
if key.startswith("single_blocks."):
block_prefix = f"single_transformer_blocks.{b}."
for i, weight in enumerate(weights):
diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}"))
for key, weights in BFL_TO_DIFFUSERS_MAP.items():
if not (key.startswith("double_blocks.") or key.startswith("single_blocks.")):
for i, weight in enumerate(weights):
diffusers_to_bfl_map[weight] = (i, key)
return diffusers_to_bfl_map
def convert_diffusers_sd_to_bfl(
diffusers_sd: dict[str, torch.Tensor], num_double_blocks: int = NUM_DOUBLE_BLOCKS, num_single_blocks: int = NUM_SINGLE_BLOCKS
) -> dict[str, torch.Tensor]:
diffusers_to_bfl_map = make_diffusers_to_bfl_map(num_double_blocks, num_single_blocks)
# iterate over three safetensors files to reduce memory usage
flux_sd = {}
for diffusers_key, tensor in diffusers_sd.items():
if diffusers_key in diffusers_to_bfl_map:
index, bfl_key = diffusers_to_bfl_map[diffusers_key]
if bfl_key not in flux_sd:
flux_sd[bfl_key] = []
flux_sd[bfl_key].append((index, tensor))
else:
logger.error(f"Error: Key not found in diffusers_to_bfl_map: {diffusers_key}")
raise KeyError(f"Key not found in diffusers_to_bfl_map: {diffusers_key}")
# concat tensors if multiple tensors are mapped to a single key, sort by index
for key, values in flux_sd.items():
if len(values) == 1:
flux_sd[key] = values[0][1]
else:
flux_sd[key] = torch.cat([value[1] for value in sorted(values, key=lambda x: x[0])])
# special case for final_layer.adaLN_modulation.1.weight and final_layer.adaLN_modulation.1.bias
def swap_scale_shift(weight):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
if "final_layer.adaLN_modulation.1.weight" in flux_sd:
flux_sd["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.weight"])
if "final_layer.adaLN_modulation.1.bias" in flux_sd:
flux_sd["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.bias"])
return flux_sd
# endregion