|
|
|
|
|
|
|
import argparse |
|
import copy |
|
import math |
|
import random |
|
from typing import Any, Optional |
|
|
|
import torch |
|
from accelerate import Accelerator |
|
from library.device_utils import init_ipex, clean_memory_on_device |
|
|
|
init_ipex() |
|
|
|
from library import flux_models, flux_train_utils, flux_utils, sd3_train_utils, strategy_base, strategy_flux, train_util |
|
import train_network_asylora |
|
from library.utils import setup_logging |
|
|
|
setup_logging() |
|
import logging |
|
import re |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class FluxNetworkTrainer(train_network_asylora.NetworkTrainer): |
|
def __init__(self): |
|
super().__init__() |
|
self.sample_prompts_te_outputs = None |
|
self.is_schnell: Optional[bool] = None |
|
self.is_swapping_blocks: bool = False |
|
|
|
def assert_extra_args(self, args, train_dataset_group): |
|
super().assert_extra_args(args, train_dataset_group) |
|
|
|
|
|
if args.fp8_base_unet: |
|
args.fp8_base = True |
|
|
|
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs: |
|
logger.warning( |
|
"cache_text_encoder_outputs_to_disk is enabled, so cache_text_encoder_outputs is also enabled" |
|
) |
|
args.cache_text_encoder_outputs = True |
|
|
|
if args.cache_text_encoder_outputs: |
|
assert ( |
|
train_dataset_group.is_text_encoder_output_cacheable() |
|
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません" |
|
|
|
|
|
self.train_clip_l = not args.network_train_unet_only |
|
self.train_t5xxl = False |
|
|
|
if args.max_token_length is not None: |
|
logger.warning("max_token_length is not used in Flux training / max_token_lengthはFluxのトレーニングでは使用されません") |
|
|
|
assert ( |
|
args.blocks_to_swap is None or args.blocks_to_swap == 0 |
|
) or not args.cpu_offload_checkpointing, "blocks_to_swap is not supported with cpu_offload_checkpointing / blocks_to_swapはcpu_offload_checkpointingと併用できません" |
|
|
|
|
|
if args.split_mode: |
|
if args.blocks_to_swap is not None: |
|
logger.warning( |
|
"split_mode is deprecated. Because `--blocks_to_swap` is set, `--split_mode` is ignored." |
|
" / split_modeは非推奨です。`--blocks_to_swap`が設定されているため、`--split_mode`は無視されます。" |
|
) |
|
else: |
|
logger.warning( |
|
"split_mode is deprecated. Please use `--blocks_to_swap` instead. `--blocks_to_swap 18` is automatically set." |
|
" / split_modeは非推奨です。代わりに`--blocks_to_swap`を使用してください。`--blocks_to_swap 18`が自動的に設定されました。" |
|
) |
|
args.blocks_to_swap = 18 |
|
|
|
train_dataset_group.verify_bucket_reso_steps(32) |
|
|
|
def load_target_model(self, args, weight_dtype, accelerator): |
|
|
|
|
|
|
|
loading_dtype = None if args.fp8_base else weight_dtype |
|
|
|
|
|
self.is_schnell, model = flux_utils.load_flow_model( |
|
args.pretrained_model_name_or_path, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors |
|
) |
|
if args.fp8_base: |
|
|
|
if model.dtype == torch.float8_e4m3fnuz or model.dtype == torch.float8_e5m2 or model.dtype == torch.float8_e5m2fnuz: |
|
raise ValueError(f"Unsupported fp8 model dtype: {model.dtype}") |
|
elif model.dtype == torch.float8_e4m3fn: |
|
logger.info("Loaded fp8 FLUX model") |
|
else: |
|
logger.info( |
|
"Cast FLUX model to fp8. This may take a while. You can reduce the time by using fp8 checkpoint." |
|
" / FLUXモデルをfp8に変換しています。これには時間がかかる場合があります。fp8チェックポイントを使用することで時間を短縮できます。" |
|
) |
|
model.to(torch.float8_e4m3fn) |
|
|
|
|
|
|
|
|
|
self.is_swapping_blocks = args.blocks_to_swap is not None and args.blocks_to_swap > 0 |
|
if self.is_swapping_blocks: |
|
|
|
logger.info(f"enable block swap: blocks_to_swap={args.blocks_to_swap}") |
|
model.enable_block_swap(args.blocks_to_swap, accelerator.device) |
|
|
|
clip_l = flux_utils.load_clip_l(args.clip_l, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors) |
|
clip_l.eval() |
|
|
|
|
|
if args.fp8_base and not args.fp8_base_unet: |
|
loading_dtype = None |
|
else: |
|
loading_dtype = weight_dtype |
|
|
|
|
|
t5xxl = flux_utils.load_t5xxl(args.t5xxl, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors) |
|
t5xxl.eval() |
|
if args.fp8_base and not args.fp8_base_unet: |
|
|
|
if t5xxl.dtype == torch.float8_e4m3fnuz or t5xxl.dtype == torch.float8_e5m2 or t5xxl.dtype == torch.float8_e5m2fnuz: |
|
raise ValueError(f"Unsupported fp8 model dtype: {t5xxl.dtype}") |
|
elif t5xxl.dtype == torch.float8_e4m3fn: |
|
logger.info("Loaded fp8 T5XXL model") |
|
|
|
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors) |
|
|
|
return flux_utils.MODEL_VERSION_FLUX_V1, [clip_l, t5xxl], ae, model |
|
|
|
def get_tokenize_strategy(self, args): |
|
_, is_schnell, _, _ = flux_utils.analyze_checkpoint_state(args.pretrained_model_name_or_path) |
|
|
|
if args.t5xxl_max_token_length is None: |
|
if is_schnell: |
|
t5xxl_max_token_length = 256 |
|
else: |
|
t5xxl_max_token_length = 512 |
|
else: |
|
t5xxl_max_token_length = args.t5xxl_max_token_length |
|
|
|
logger.info(f"t5xxl_max_token_length: {t5xxl_max_token_length}") |
|
return strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length, args.tokenizer_cache_dir) |
|
|
|
def get_tokenizers(self, tokenize_strategy: strategy_flux.FluxTokenizeStrategy): |
|
return [tokenize_strategy.clip_l, tokenize_strategy.t5xxl] |
|
|
|
def get_latents_caching_strategy(self, args): |
|
latents_caching_strategy = strategy_flux.FluxLatentsCachingStrategy(args.cache_latents_to_disk, args.vae_batch_size, False) |
|
return latents_caching_strategy |
|
|
|
def get_text_encoding_strategy(self, args): |
|
return strategy_flux.FluxTextEncodingStrategy(apply_t5_attn_mask=args.apply_t5_attn_mask) |
|
|
|
def post_process_network(self, args, accelerator, network, text_encoders, unet): |
|
|
|
self.train_t5xxl = network.train_t5xxl |
|
|
|
if self.train_t5xxl and args.cache_text_encoder_outputs: |
|
raise ValueError( |
|
"T5XXL is trained, so cache_text_encoder_outputs cannot be used / T5XXL学習時はcache_text_encoder_outputsは使用できません" |
|
) |
|
|
|
def get_models_for_text_encoding(self, args, accelerator, text_encoders): |
|
if args.cache_text_encoder_outputs: |
|
if self.train_clip_l and not self.train_t5xxl: |
|
return text_encoders[0:1] |
|
else: |
|
return None |
|
else: |
|
return text_encoders |
|
|
|
def get_text_encoders_train_flags(self, args, text_encoders): |
|
return [self.train_clip_l, self.train_t5xxl] |
|
|
|
def get_text_encoder_outputs_caching_strategy(self, args): |
|
if args.cache_text_encoder_outputs: |
|
|
|
return strategy_flux.FluxTextEncoderOutputsCachingStrategy( |
|
args.cache_text_encoder_outputs_to_disk, |
|
args.text_encoder_batch_size, |
|
args.skip_cache_check, |
|
is_partial=self.train_clip_l or self.train_t5xxl, |
|
apply_t5_attn_mask=args.apply_t5_attn_mask, |
|
) |
|
else: |
|
return None |
|
|
|
def cache_text_encoder_outputs_if_needed( |
|
self, args, accelerator: Accelerator, unet, vae, text_encoders, dataset: train_util.DatasetGroup, weight_dtype |
|
): |
|
if args.cache_text_encoder_outputs: |
|
if not args.lowram: |
|
|
|
logger.info("move vae and unet to cpu to save memory") |
|
org_vae_device = vae.device |
|
org_unet_device = unet.device |
|
vae.to("cpu") |
|
unet.to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
|
|
|
|
logger.info("move text encoders to gpu") |
|
text_encoders[0].to(accelerator.device, dtype=weight_dtype) |
|
text_encoders[1].to(accelerator.device) |
|
|
|
if text_encoders[1].dtype == torch.float8_e4m3fn: |
|
|
|
self.prepare_text_encoder_fp8(1, text_encoders[1], text_encoders[1].dtype, weight_dtype) |
|
else: |
|
|
|
text_encoders[1].to(weight_dtype) |
|
|
|
with accelerator.autocast(): |
|
dataset.new_cache_text_encoder_outputs(text_encoders, accelerator) |
|
|
|
|
|
if args.sample_prompts is not None: |
|
logger.info(f"cache Text Encoder outputs for sample prompt: {args.sample_prompts}") |
|
|
|
tokenize_strategy: strategy_flux.FluxTokenizeStrategy = strategy_base.TokenizeStrategy.get_strategy() |
|
text_encoding_strategy: strategy_flux.FluxTextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy() |
|
|
|
prompts = train_util.load_prompts(args.sample_prompts) |
|
sample_prompts_te_outputs = {} |
|
with accelerator.autocast(), torch.no_grad(): |
|
for prompt_dict in prompts: |
|
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]: |
|
if p not in sample_prompts_te_outputs: |
|
logger.info(f"cache Text Encoder outputs for prompt: {p}") |
|
tokens_and_masks = tokenize_strategy.tokenize(p) |
|
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens( |
|
tokenize_strategy, text_encoders, tokens_and_masks, args.apply_t5_attn_mask |
|
) |
|
self.sample_prompts_te_outputs = sample_prompts_te_outputs |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if not self.is_train_text_encoder(args): |
|
logger.info("move CLIP-L back to cpu") |
|
text_encoders[0].to("cpu") |
|
logger.info("move t5XXL back to cpu") |
|
text_encoders[1].to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
|
|
if not args.lowram: |
|
logger.info("move vae and unet back to original device") |
|
vae.to(org_vae_device) |
|
unet.to(org_unet_device) |
|
else: |
|
|
|
text_encoders[0].to(accelerator.device, dtype=weight_dtype) |
|
text_encoders[1].to(accelerator.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sample_images(self, accelerator, args, epoch, global_step, device, ae, tokenizer, text_encoder, flux): |
|
text_encoders = text_encoder |
|
text_encoders = self.get_models_for_text_encoding(args, accelerator, text_encoders) |
|
|
|
flux_train_utils.sample_images( |
|
accelerator, args, epoch, global_step, flux, ae, text_encoders, self.sample_prompts_te_outputs |
|
) |
|
|
|
|
|
""" |
|
class FluxUpperLowerWrapper(torch.nn.Module): |
|
def __init__(self, flux_upper: flux_models.FluxUpper, flux_lower: flux_models.FluxLower, device: torch.device): |
|
super().__init__() |
|
self.flux_upper = flux_upper |
|
self.flux_lower = flux_lower |
|
self.target_device = device |
|
|
|
def prepare_block_swap_before_forward(self): |
|
pass |
|
|
|
def forward(self, img, img_ids, txt, txt_ids, timesteps, y, guidance=None, txt_attention_mask=None): |
|
self.flux_lower.to("cpu") |
|
clean_memory_on_device(self.target_device) |
|
self.flux_upper.to(self.target_device) |
|
img, txt, vec, pe = self.flux_upper(img, img_ids, txt, txt_ids, timesteps, y, guidance, txt_attention_mask) |
|
self.flux_upper.to("cpu") |
|
clean_memory_on_device(self.target_device) |
|
self.flux_lower.to(self.target_device) |
|
return self.flux_lower(img, txt, vec, pe, txt_attention_mask) |
|
|
|
wrapper = FluxUpperLowerWrapper(self.flux_upper, flux, accelerator.device) |
|
clean_memory_on_device(accelerator.device) |
|
flux_train_utils.sample_images( |
|
accelerator, args, epoch, global_step, wrapper, ae, text_encoders, self.sample_prompts_te_outputs |
|
) |
|
clean_memory_on_device(accelerator.device) |
|
""" |
|
|
|
def get_noise_scheduler(self, args: argparse.Namespace, device: torch.device) -> Any: |
|
noise_scheduler = sd3_train_utils.FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=args.discrete_flow_shift) |
|
self.noise_scheduler_copy = copy.deepcopy(noise_scheduler) |
|
return noise_scheduler |
|
|
|
def encode_images_to_latents(self, args, accelerator, vae, images): |
|
return vae.encode(images) |
|
|
|
def shift_scale_latents(self, args, latents): |
|
return latents |
|
|
|
def get_noise_pred_and_target( |
|
self, |
|
args, |
|
accelerator, |
|
noise_scheduler, |
|
latents, |
|
batch, |
|
text_encoder_conds, |
|
unet: flux_models.Flux, |
|
network, |
|
weight_dtype, |
|
train_unet, |
|
): |
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
|
|
noisy_model_input, timesteps, sigmas = flux_train_utils.get_noisy_model_input_and_timesteps( |
|
args, noise_scheduler, latents, noise, accelerator.device, weight_dtype |
|
) |
|
|
|
|
|
packed_noisy_model_input = flux_utils.pack_latents(noisy_model_input) |
|
packed_latent_height, packed_latent_width = noisy_model_input.shape[2] // 2, noisy_model_input.shape[3] // 2 |
|
img_ids = flux_utils.prepare_img_ids(bsz, packed_latent_height, packed_latent_width).to(device=accelerator.device) |
|
|
|
|
|
|
|
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device) |
|
|
|
|
|
if args.gradient_checkpointing: |
|
noisy_model_input.requires_grad_(True) |
|
for t in text_encoder_conds: |
|
if t is not None and t.dtype.is_floating_point: |
|
t.requires_grad_(True) |
|
img_ids.requires_grad_(True) |
|
guidance_vec.requires_grad_(True) |
|
|
|
|
|
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds |
|
if not args.apply_t5_attn_mask: |
|
t5_attn_mask = None |
|
|
|
def call_dit(img, img_ids, t5_out, txt_ids, l_pooled, timesteps, guidance_vec, t5_attn_mask): |
|
|
|
|
|
with accelerator.autocast(): |
|
|
|
model_pred = unet( |
|
img=img, |
|
img_ids=img_ids, |
|
txt=t5_out, |
|
txt_ids=txt_ids, |
|
y=l_pooled, |
|
timesteps=timesteps / 1000, |
|
guidance=guidance_vec, |
|
txt_attention_mask=t5_attn_mask |
|
) |
|
""" |
|
else: |
|
# split forward to reduce memory usage |
|
assert network.train_blocks == "single", "train_blocks must be single for split mode" |
|
with accelerator.autocast(): |
|
# move flux lower to cpu, and then move flux upper to gpu |
|
unet.to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
self.flux_upper.to(accelerator.device) |
|
|
|
# upper model does not require grad |
|
with torch.no_grad(): |
|
intermediate_img, intermediate_txt, vec, pe = self.flux_upper( |
|
img=packed_noisy_model_input, |
|
img_ids=img_ids, |
|
txt=t5_out, |
|
txt_ids=txt_ids, |
|
y=l_pooled, |
|
timesteps=timesteps / 1000, |
|
guidance=guidance_vec, |
|
txt_attention_mask=t5_attn_mask, |
|
) |
|
|
|
# move flux upper back to cpu, and then move flux lower to gpu |
|
self.flux_upper.to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
unet.to(accelerator.device) |
|
|
|
# lower model requires grad |
|
intermediate_img.requires_grad_(True) |
|
intermediate_txt.requires_grad_(True) |
|
vec.requires_grad_(True) |
|
pe.requires_grad_(True) |
|
model_pred = unet(img=intermediate_img, txt=intermediate_txt, vec=vec, pe=pe, txt_attention_mask=t5_attn_mask) |
|
""" |
|
|
|
return model_pred |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_cur = batch["captions"][0] |
|
match = re.search(r'--lora_up_cur (\d+)', prompt_cur) |
|
assert match, "Pattern '--lora_up_cur' not found" |
|
lora_category = int(match.group(1)) |
|
|
|
for lora in network.unet_loras: |
|
lora.set_lora_up_cur(lora_category-1) |
|
|
|
model_pred = call_dit( |
|
img=packed_noisy_model_input, |
|
img_ids=img_ids, |
|
t5_out=t5_out, |
|
txt_ids=txt_ids, |
|
l_pooled=l_pooled, |
|
timesteps=timesteps, |
|
guidance_vec=guidance_vec, |
|
t5_attn_mask=t5_attn_mask |
|
) |
|
|
|
|
|
model_pred = flux_utils.unpack_latents(model_pred, packed_latent_height, packed_latent_width) |
|
|
|
|
|
model_pred, weighting = flux_train_utils.apply_model_prediction_type(args, model_pred, noisy_model_input, sigmas) |
|
|
|
|
|
target = noise - latents |
|
|
|
|
|
if "custom_attributes" in batch: |
|
diff_output_pr_indices = [] |
|
for i, custom_attributes in enumerate(batch["custom_attributes"]): |
|
if "diff_output_preservation" in custom_attributes and custom_attributes["diff_output_preservation"]: |
|
diff_output_pr_indices.append(i) |
|
|
|
if len(diff_output_pr_indices) > 0: |
|
network.set_multiplier(0.0) |
|
unet.prepare_block_swap_before_forward() |
|
with torch.no_grad(): |
|
model_pred_prior = call_dit( |
|
img=packed_noisy_model_input[diff_output_pr_indices], |
|
img_ids=img_ids[diff_output_pr_indices], |
|
t5_out=t5_out[diff_output_pr_indices], |
|
txt_ids=txt_ids[diff_output_pr_indices], |
|
l_pooled=l_pooled[diff_output_pr_indices], |
|
timesteps=timesteps[diff_output_pr_indices], |
|
guidance_vec=guidance_vec[diff_output_pr_indices] if guidance_vec is not None else None, |
|
t5_attn_mask=t5_attn_mask[diff_output_pr_indices] if t5_attn_mask is not None else None, |
|
) |
|
network.set_multiplier(1.0) |
|
|
|
model_pred_prior = flux_utils.unpack_latents(model_pred_prior, packed_latent_height, packed_latent_width) |
|
model_pred_prior, _ = flux_train_utils.apply_model_prediction_type( |
|
args, |
|
model_pred_prior, |
|
noisy_model_input[diff_output_pr_indices], |
|
sigmas[diff_output_pr_indices] if sigmas is not None else None, |
|
) |
|
target[diff_output_pr_indices] = model_pred_prior.to(target.dtype) |
|
|
|
return model_pred, target, timesteps, None, weighting |
|
|
|
def post_process_loss(self, loss, args, timesteps, noise_scheduler): |
|
return loss |
|
|
|
def get_sai_model_spec(self, args): |
|
return train_util.get_sai_model_spec(None, args, False, True, False, flux="dev") |
|
|
|
def update_metadata(self, metadata, args): |
|
metadata["ss_apply_t5_attn_mask"] = args.apply_t5_attn_mask |
|
metadata["ss_weighting_scheme"] = args.weighting_scheme |
|
metadata["ss_logit_mean"] = args.logit_mean |
|
metadata["ss_logit_std"] = args.logit_std |
|
metadata["ss_mode_scale"] = args.mode_scale |
|
metadata["ss_guidance_scale"] = args.guidance_scale |
|
metadata["ss_timestep_sampling"] = args.timestep_sampling |
|
metadata["ss_sigmoid_scale"] = args.sigmoid_scale |
|
metadata["ss_model_prediction_type"] = args.model_prediction_type |
|
metadata["ss_discrete_flow_shift"] = args.discrete_flow_shift |
|
|
|
def is_text_encoder_not_needed_for_training(self, args): |
|
return args.cache_text_encoder_outputs and not self.is_train_text_encoder(args) |
|
|
|
def prepare_text_encoder_grad_ckpt_workaround(self, index, text_encoder): |
|
if index == 0: |
|
return super().prepare_text_encoder_grad_ckpt_workaround(index, text_encoder) |
|
else: |
|
text_encoder.encoder.embed_tokens.requires_grad_(True) |
|
|
|
def prepare_text_encoder_fp8(self, index, text_encoder, te_weight_dtype, weight_dtype): |
|
if index == 0: |
|
logger.info(f"prepare CLIP-L for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}") |
|
text_encoder.to(te_weight_dtype) |
|
text_encoder.text_model.embeddings.to(dtype=weight_dtype) |
|
else: |
|
|
|
def prepare_fp8(text_encoder, target_dtype): |
|
def forward_hook(module): |
|
def forward(hidden_states): |
|
hidden_gelu = module.act(module.wi_0(hidden_states)) |
|
hidden_linear = module.wi_1(hidden_states) |
|
hidden_states = hidden_gelu * hidden_linear |
|
hidden_states = module.dropout(hidden_states) |
|
|
|
hidden_states = module.wo(hidden_states) |
|
return hidden_states |
|
|
|
return forward |
|
|
|
for module in text_encoder.modules(): |
|
if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]: |
|
|
|
module.to(target_dtype) |
|
if module.__class__.__name__ in ["T5DenseGatedActDense"]: |
|
|
|
module.forward = forward_hook(module) |
|
|
|
if flux_utils.get_t5xxl_actual_dtype(text_encoder) == torch.float8_e4m3fn and text_encoder.dtype == weight_dtype: |
|
logger.info(f"T5XXL already prepared for fp8") |
|
else: |
|
logger.info(f"prepare T5XXL for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}, add hooks") |
|
text_encoder.to(te_weight_dtype) |
|
prepare_fp8(text_encoder, weight_dtype) |
|
|
|
def prepare_unet_with_accelerator( |
|
self, args: argparse.Namespace, accelerator: Accelerator, unet: torch.nn.Module |
|
) -> torch.nn.Module: |
|
if not self.is_swapping_blocks: |
|
return super().prepare_unet_with_accelerator(args, accelerator, unet) |
|
|
|
|
|
flux: flux_models.Flux = unet |
|
flux = accelerator.prepare(flux, device_placement=[not self.is_swapping_blocks]) |
|
accelerator.unwrap_model(flux).move_to_device_except_swap_blocks(accelerator.device) |
|
accelerator.unwrap_model(flux).prepare_block_swap_before_forward() |
|
|
|
return flux |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = train_network_asylora.setup_parser() |
|
train_util.add_dit_training_arguments(parser) |
|
flux_train_utils.add_flux_train_arguments(parser) |
|
|
|
parser.add_argument( |
|
"--split_mode", |
|
action="store_true", |
|
|
|
|
|
help="[Deprecated] This option is deprecated. Please use `--blocks_to_swap` instead." |
|
" / このオプションは非推奨です。代わりに`--blocks_to_swap`を使用してください。", |
|
) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
train_util.verify_command_line_training_args(args) |
|
args = train_util.read_config_from_file(args, parser) |
|
|
|
trainer = FluxNetworkTrainer() |
|
trainer.train(args) |