MakeAnything-AsymmertricLoRA / flux_train_network_asylora.py
yiren98's picture
main
c1bc1cb
# coding=utf-8
import argparse
import copy
import math
import random
from typing import Any, Optional
import torch
from accelerate import Accelerator
from library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from library import flux_models, flux_train_utils, flux_utils, sd3_train_utils, strategy_base, strategy_flux, train_util
import train_network_asylora
from library.utils import setup_logging
setup_logging()
import logging
import re
logger = logging.getLogger(__name__)
class FluxNetworkTrainer(train_network_asylora.NetworkTrainer):
def __init__(self):
super().__init__()
self.sample_prompts_te_outputs = None
self.is_schnell: Optional[bool] = None
self.is_swapping_blocks: bool = False
def assert_extra_args(self, args, train_dataset_group):
super().assert_extra_args(args, train_dataset_group)
# sdxl_train_util.verify_sdxl_training_args(args)
if args.fp8_base_unet:
args.fp8_base = True # if fp8_base_unet is enabled, fp8_base is also enabled for FLUX.1
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
logger.warning(
"cache_text_encoder_outputs_to_disk is enabled, so cache_text_encoder_outputs is also enabled"
)
args.cache_text_encoder_outputs = True
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
# prepare CLIP-L/T5XXL training flags
self.train_clip_l = not args.network_train_unet_only
self.train_t5xxl = False # default is False even if args.network_train_unet_only is False
if args.max_token_length is not None:
logger.warning("max_token_length is not used in Flux training / max_token_lengthはFluxのトレーニングでは使用されません")
assert (
args.blocks_to_swap is None or args.blocks_to_swap == 0
) or not args.cpu_offload_checkpointing, "blocks_to_swap is not supported with cpu_offload_checkpointing / blocks_to_swapはcpu_offload_checkpointingと併用できません"
# deprecated split_mode option
if args.split_mode:
if args.blocks_to_swap is not None:
logger.warning(
"split_mode is deprecated. Because `--blocks_to_swap` is set, `--split_mode` is ignored."
" / split_modeは非推奨です。`--blocks_to_swap`が設定されているため、`--split_mode`は無視されます。"
)
else:
logger.warning(
"split_mode is deprecated. Please use `--blocks_to_swap` instead. `--blocks_to_swap 18` is automatically set."
" / split_modeは非推奨です。代わりに`--blocks_to_swap`を使用してください。`--blocks_to_swap 18`が自動的に設定されました。"
)
args.blocks_to_swap = 18 # 18 is safe for most cases
train_dataset_group.verify_bucket_reso_steps(32) # TODO check this
def load_target_model(self, args, weight_dtype, accelerator):
# currently offload to cpu for some models
# if the file is fp8 and we are using fp8_base, we can load it as is (fp8)
loading_dtype = None if args.fp8_base else weight_dtype
# if we load to cpu, flux.to(fp8) takes a long time, so we should load to gpu in future
self.is_schnell, model = flux_utils.load_flow_model(
args.pretrained_model_name_or_path, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors
)
if args.fp8_base:
# check dtype of model
if model.dtype == torch.float8_e4m3fnuz or model.dtype == torch.float8_e5m2 or model.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {model.dtype}")
elif model.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 FLUX model")
else:
logger.info(
"Cast FLUX model to fp8. This may take a while. You can reduce the time by using fp8 checkpoint."
" / FLUXモデルをfp8に変換しています。これには時間がかかる場合があります。fp8チェックポイントを使用することで時間を短縮できます。"
)
model.to(torch.float8_e4m3fn)
# if args.split_mode:
# model = self.prepare_split_model(model, weight_dtype, accelerator)
self.is_swapping_blocks = args.blocks_to_swap is not None and args.blocks_to_swap > 0
if self.is_swapping_blocks:
# Swap blocks between CPU and GPU to reduce memory usage, in forward and backward passes.
logger.info(f"enable block swap: blocks_to_swap={args.blocks_to_swap}")
model.enable_block_swap(args.blocks_to_swap, accelerator.device)
clip_l = flux_utils.load_clip_l(args.clip_l, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
clip_l.eval()
# if the file is fp8 and we are using fp8_base (not unet), we can load it as is (fp8)
if args.fp8_base and not args.fp8_base_unet:
loading_dtype = None # as is
else:
loading_dtype = weight_dtype
# loading t5xxl to cpu takes a long time, so we should load to gpu in future
t5xxl = flux_utils.load_t5xxl(args.t5xxl, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
t5xxl.eval()
if args.fp8_base and not args.fp8_base_unet:
# check dtype of model
if t5xxl.dtype == torch.float8_e4m3fnuz or t5xxl.dtype == torch.float8_e5m2 or t5xxl.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {t5xxl.dtype}")
elif t5xxl.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 T5XXL model")
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
return flux_utils.MODEL_VERSION_FLUX_V1, [clip_l, t5xxl], ae, model
def get_tokenize_strategy(self, args):
_, is_schnell, _, _ = flux_utils.analyze_checkpoint_state(args.pretrained_model_name_or_path)
if args.t5xxl_max_token_length is None:
if is_schnell:
t5xxl_max_token_length = 256
else:
t5xxl_max_token_length = 512
else:
t5xxl_max_token_length = args.t5xxl_max_token_length
logger.info(f"t5xxl_max_token_length: {t5xxl_max_token_length}")
return strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length, args.tokenizer_cache_dir)
def get_tokenizers(self, tokenize_strategy: strategy_flux.FluxTokenizeStrategy):
return [tokenize_strategy.clip_l, tokenize_strategy.t5xxl]
def get_latents_caching_strategy(self, args):
latents_caching_strategy = strategy_flux.FluxLatentsCachingStrategy(args.cache_latents_to_disk, args.vae_batch_size, False)
return latents_caching_strategy
def get_text_encoding_strategy(self, args):
return strategy_flux.FluxTextEncodingStrategy(apply_t5_attn_mask=args.apply_t5_attn_mask)
def post_process_network(self, args, accelerator, network, text_encoders, unet):
# check t5xxl is trained or not
self.train_t5xxl = network.train_t5xxl
if self.train_t5xxl and args.cache_text_encoder_outputs:
raise ValueError(
"T5XXL is trained, so cache_text_encoder_outputs cannot be used / T5XXL学習時はcache_text_encoder_outputsは使用できません"
)
def get_models_for_text_encoding(self, args, accelerator, text_encoders):
if args.cache_text_encoder_outputs:
if self.train_clip_l and not self.train_t5xxl:
return text_encoders[0:1] # only CLIP-L is needed for encoding because T5XXL is cached
else:
return None # no text encoders are needed for encoding because both are cached
else:
return text_encoders # both CLIP-L and T5XXL are needed for encoding
def get_text_encoders_train_flags(self, args, text_encoders):
return [self.train_clip_l, self.train_t5xxl]
def get_text_encoder_outputs_caching_strategy(self, args):
if args.cache_text_encoder_outputs:
# if the text encoders is trained, we need tokenization, so is_partial is True
return strategy_flux.FluxTextEncoderOutputsCachingStrategy(
args.cache_text_encoder_outputs_to_disk,
args.text_encoder_batch_size,
args.skip_cache_check,
is_partial=self.train_clip_l or self.train_t5xxl,
apply_t5_attn_mask=args.apply_t5_attn_mask,
)
else:
return None
def cache_text_encoder_outputs_if_needed(
self, args, accelerator: Accelerator, unet, vae, text_encoders, dataset: train_util.DatasetGroup, weight_dtype
):
if args.cache_text_encoder_outputs:
if not args.lowram:
# メモリ消費を減らす
logger.info("move vae and unet to cpu to save memory")
org_vae_device = vae.device
org_unet_device = unet.device
vae.to("cpu")
unet.to("cpu")
clean_memory_on_device(accelerator.device)
# When TE is not be trained, it will not be prepared so we need to use explicit autocast
logger.info("move text encoders to gpu")
text_encoders[0].to(accelerator.device, dtype=weight_dtype) # always not fp8
text_encoders[1].to(accelerator.device)
if text_encoders[1].dtype == torch.float8_e4m3fn:
# if we load fp8 weights, the model is already fp8, so we use it as is
self.prepare_text_encoder_fp8(1, text_encoders[1], text_encoders[1].dtype, weight_dtype)
else:
# otherwise, we need to convert it to target dtype
text_encoders[1].to(weight_dtype)
with accelerator.autocast():
dataset.new_cache_text_encoder_outputs(text_encoders, accelerator)
# cache sample prompts
if args.sample_prompts is not None:
logger.info(f"cache Text Encoder outputs for sample prompt: {args.sample_prompts}")
tokenize_strategy: strategy_flux.FluxTokenizeStrategy = strategy_base.TokenizeStrategy.get_strategy()
text_encoding_strategy: strategy_flux.FluxTextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy()
prompts = train_util.load_prompts(args.sample_prompts)
sample_prompts_te_outputs = {} # key: prompt, value: text encoder outputs
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
tokens_and_masks = tokenize_strategy.tokenize(p)
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
tokenize_strategy, text_encoders, tokens_and_masks, args.apply_t5_attn_mask
)
self.sample_prompts_te_outputs = sample_prompts_te_outputs
accelerator.wait_for_everyone()
# move back to cpu
if not self.is_train_text_encoder(args):
logger.info("move CLIP-L back to cpu")
text_encoders[0].to("cpu")
logger.info("move t5XXL back to cpu")
text_encoders[1].to("cpu")
clean_memory_on_device(accelerator.device)
if not args.lowram:
logger.info("move vae and unet back to original device")
vae.to(org_vae_device)
unet.to(org_unet_device)
else:
# Text Encoderから毎回出力を取得するので、GPUに乗せておく
text_encoders[0].to(accelerator.device, dtype=weight_dtype)
text_encoders[1].to(accelerator.device)
# def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
# noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
# # get size embeddings
# orig_size = batch["original_sizes_hw"]
# crop_size = batch["crop_top_lefts"]
# target_size = batch["target_sizes_hw"]
# embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
# # concat embeddings
# encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds
# vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
# text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
# noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
# return noise_pred
def sample_images(self, accelerator, args, epoch, global_step, device, ae, tokenizer, text_encoder, flux):
text_encoders = text_encoder # for compatibility
text_encoders = self.get_models_for_text_encoding(args, accelerator, text_encoders)
flux_train_utils.sample_images(
accelerator, args, epoch, global_step, flux, ae, text_encoders, self.sample_prompts_te_outputs
)
# return
"""
class FluxUpperLowerWrapper(torch.nn.Module):
def __init__(self, flux_upper: flux_models.FluxUpper, flux_lower: flux_models.FluxLower, device: torch.device):
super().__init__()
self.flux_upper = flux_upper
self.flux_lower = flux_lower
self.target_device = device
def prepare_block_swap_before_forward(self):
pass
def forward(self, img, img_ids, txt, txt_ids, timesteps, y, guidance=None, txt_attention_mask=None):
self.flux_lower.to("cpu")
clean_memory_on_device(self.target_device)
self.flux_upper.to(self.target_device)
img, txt, vec, pe = self.flux_upper(img, img_ids, txt, txt_ids, timesteps, y, guidance, txt_attention_mask)
self.flux_upper.to("cpu")
clean_memory_on_device(self.target_device)
self.flux_lower.to(self.target_device)
return self.flux_lower(img, txt, vec, pe, txt_attention_mask)
wrapper = FluxUpperLowerWrapper(self.flux_upper, flux, accelerator.device)
clean_memory_on_device(accelerator.device)
flux_train_utils.sample_images(
accelerator, args, epoch, global_step, wrapper, ae, text_encoders, self.sample_prompts_te_outputs
)
clean_memory_on_device(accelerator.device)
"""
def get_noise_scheduler(self, args: argparse.Namespace, device: torch.device) -> Any:
noise_scheduler = sd3_train_utils.FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=args.discrete_flow_shift)
self.noise_scheduler_copy = copy.deepcopy(noise_scheduler)
return noise_scheduler
def encode_images_to_latents(self, args, accelerator, vae, images):
return vae.encode(images)
def shift_scale_latents(self, args, latents):
return latents
def get_noise_pred_and_target(
self,
args,
accelerator,
noise_scheduler,
latents,
batch,
text_encoder_conds,
unet: flux_models.Flux,
network,
weight_dtype,
train_unet,
):
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# get noisy model input and timesteps
noisy_model_input, timesteps, sigmas = flux_train_utils.get_noisy_model_input_and_timesteps(
args, noise_scheduler, latents, noise, accelerator.device, weight_dtype
)
# pack latents and get img_ids
packed_noisy_model_input = flux_utils.pack_latents(noisy_model_input) # b, c, h*2, w*2 -> b, h*w, c*4
packed_latent_height, packed_latent_width = noisy_model_input.shape[2] // 2, noisy_model_input.shape[3] // 2
img_ids = flux_utils.prepare_img_ids(bsz, packed_latent_height, packed_latent_width).to(device=accelerator.device)
# get guidance
# ensure guidance_scale in args is float
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device)
# ensure the hidden state will require grad
if args.gradient_checkpointing:
noisy_model_input.requires_grad_(True)
for t in text_encoder_conds:
if t is not None and t.dtype.is_floating_point:
t.requires_grad_(True)
img_ids.requires_grad_(True)
guidance_vec.requires_grad_(True)
# Predict the noise residual
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds
if not args.apply_t5_attn_mask:
t5_attn_mask = None
def call_dit(img, img_ids, t5_out, txt_ids, l_pooled, timesteps, guidance_vec, t5_attn_mask):
# if not args.split_mode:
# normal forward
with accelerator.autocast():
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transformer model (we should not keep it but I want to keep the inputs same for the model for testing)
model_pred = unet(
img=img,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask
)
"""
else:
# split forward to reduce memory usage
assert network.train_blocks == "single", "train_blocks must be single for split mode"
with accelerator.autocast():
# move flux lower to cpu, and then move flux upper to gpu
unet.to("cpu")
clean_memory_on_device(accelerator.device)
self.flux_upper.to(accelerator.device)
# upper model does not require grad
with torch.no_grad():
intermediate_img, intermediate_txt, vec, pe = self.flux_upper(
img=packed_noisy_model_input,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
# move flux upper back to cpu, and then move flux lower to gpu
self.flux_upper.to("cpu")
clean_memory_on_device(accelerator.device)
unet.to(accelerator.device)
# lower model requires grad
intermediate_img.requires_grad_(True)
intermediate_txt.requires_grad_(True)
vec.requires_grad_(True)
pe.requires_grad_(True)
model_pred = unet(img=intermediate_img, txt=intermediate_txt, vec=vec, pe=pe, txt_attention_mask=t5_attn_mask)
"""
return model_pred
# 获取数据集分类编号 文本
# lora_category = batch["captions"][0].split(",")[0][3:]
# assert lora_category.isdigit(), f"lora_category 不是整数,值为: {lora_category}, {batch['captions'][0]}"
# lora_category = int(lora_category)
prompt_cur = batch["captions"][0]
match = re.search(r'--lora_up_cur (\d+)', prompt_cur)
assert match, "Pattern '--lora_up_cur' not found"
lora_category = int(match.group(1))
for lora in network.unet_loras:
lora.set_lora_up_cur(lora_category-1)
model_pred = call_dit(
img=packed_noisy_model_input,
img_ids=img_ids,
t5_out=t5_out,
txt_ids=txt_ids,
l_pooled=l_pooled,
timesteps=timesteps,
guidance_vec=guidance_vec,
t5_attn_mask=t5_attn_mask
)
# unpack latents
model_pred = flux_utils.unpack_latents(model_pred, packed_latent_height, packed_latent_width)
# apply model prediction type
model_pred, weighting = flux_train_utils.apply_model_prediction_type(args, model_pred, noisy_model_input, sigmas)
# flow matching loss: this is different from SD3
target = noise - latents
# differential output preservation
if "custom_attributes" in batch:
diff_output_pr_indices = []
for i, custom_attributes in enumerate(batch["custom_attributes"]):
if "diff_output_preservation" in custom_attributes and custom_attributes["diff_output_preservation"]:
diff_output_pr_indices.append(i)
if len(diff_output_pr_indices) > 0:
network.set_multiplier(0.0)
unet.prepare_block_swap_before_forward()
with torch.no_grad():
model_pred_prior = call_dit(
img=packed_noisy_model_input[diff_output_pr_indices],
img_ids=img_ids[diff_output_pr_indices],
t5_out=t5_out[diff_output_pr_indices],
txt_ids=txt_ids[diff_output_pr_indices],
l_pooled=l_pooled[diff_output_pr_indices],
timesteps=timesteps[diff_output_pr_indices],
guidance_vec=guidance_vec[diff_output_pr_indices] if guidance_vec is not None else None,
t5_attn_mask=t5_attn_mask[diff_output_pr_indices] if t5_attn_mask is not None else None,
)
network.set_multiplier(1.0) # may be overwritten by "network_multipliers" in the next step
model_pred_prior = flux_utils.unpack_latents(model_pred_prior, packed_latent_height, packed_latent_width)
model_pred_prior, _ = flux_train_utils.apply_model_prediction_type(
args,
model_pred_prior,
noisy_model_input[diff_output_pr_indices],
sigmas[diff_output_pr_indices] if sigmas is not None else None,
)
target[diff_output_pr_indices] = model_pred_prior.to(target.dtype)
return model_pred, target, timesteps, None, weighting
def post_process_loss(self, loss, args, timesteps, noise_scheduler):
return loss
def get_sai_model_spec(self, args):
return train_util.get_sai_model_spec(None, args, False, True, False, flux="dev")
def update_metadata(self, metadata, args):
metadata["ss_apply_t5_attn_mask"] = args.apply_t5_attn_mask
metadata["ss_weighting_scheme"] = args.weighting_scheme
metadata["ss_logit_mean"] = args.logit_mean
metadata["ss_logit_std"] = args.logit_std
metadata["ss_mode_scale"] = args.mode_scale
metadata["ss_guidance_scale"] = args.guidance_scale
metadata["ss_timestep_sampling"] = args.timestep_sampling
metadata["ss_sigmoid_scale"] = args.sigmoid_scale
metadata["ss_model_prediction_type"] = args.model_prediction_type
metadata["ss_discrete_flow_shift"] = args.discrete_flow_shift
def is_text_encoder_not_needed_for_training(self, args):
return args.cache_text_encoder_outputs and not self.is_train_text_encoder(args)
def prepare_text_encoder_grad_ckpt_workaround(self, index, text_encoder):
if index == 0: # CLIP-L
return super().prepare_text_encoder_grad_ckpt_workaround(index, text_encoder)
else: # T5XXL
text_encoder.encoder.embed_tokens.requires_grad_(True)
def prepare_text_encoder_fp8(self, index, text_encoder, te_weight_dtype, weight_dtype):
if index == 0: # CLIP-L
logger.info(f"prepare CLIP-L for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}")
text_encoder.to(te_weight_dtype) # fp8
text_encoder.text_model.embeddings.to(dtype=weight_dtype)
else: # T5XXL
def prepare_fp8(text_encoder, target_dtype):
def forward_hook(module):
def forward(hidden_states):
hidden_gelu = module.act(module.wi_0(hidden_states))
hidden_linear = module.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = module.dropout(hidden_states)
hidden_states = module.wo(hidden_states)
return hidden_states
return forward
for module in text_encoder.modules():
if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["T5DenseGatedActDense"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
if flux_utils.get_t5xxl_actual_dtype(text_encoder) == torch.float8_e4m3fn and text_encoder.dtype == weight_dtype:
logger.info(f"T5XXL already prepared for fp8")
else:
logger.info(f"prepare T5XXL for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}, add hooks")
text_encoder.to(te_weight_dtype) # fp8
prepare_fp8(text_encoder, weight_dtype)
def prepare_unet_with_accelerator(
self, args: argparse.Namespace, accelerator: Accelerator, unet: torch.nn.Module
) -> torch.nn.Module:
if not self.is_swapping_blocks:
return super().prepare_unet_with_accelerator(args, accelerator, unet)
# if we doesn't swap blocks, we can move the model to device
flux: flux_models.Flux = unet
flux = accelerator.prepare(flux, device_placement=[not self.is_swapping_blocks])
accelerator.unwrap_model(flux).move_to_device_except_swap_blocks(accelerator.device) # reduce peak memory usage
accelerator.unwrap_model(flux).prepare_block_swap_before_forward()
return flux
def setup_parser() -> argparse.ArgumentParser:
parser = train_network_asylora.setup_parser()
train_util.add_dit_training_arguments(parser)
flux_train_utils.add_flux_train_arguments(parser)
parser.add_argument(
"--split_mode",
action="store_true",
# help="[EXPERIMENTAL] use split mode for Flux model, network arg `train_blocks=single` is required"
# + "/[実験的] Fluxモデルの分割モードを使用する。ネットワーク引数`train_blocks=single`が必要",
help="[Deprecated] This option is deprecated. Please use `--blocks_to_swap` instead."
" / このオプションは非推奨です。代わりに`--blocks_to_swap`を使用してください。",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
trainer = FluxNetworkTrainer()
trainer.train(args)