Spaces:
Running
on
Zero
Running
on
Zero
File size: 72,897 Bytes
c1bc1cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 |
import importlib
import argparse
import math
import os
import sys
import random
import time
import json
from multiprocessing import Value
from typing import Any, List
import toml
from tqdm import tqdm
import torch
from library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from accelerate.utils import set_seed
from diffusers import DDPMScheduler
from library import deepspeed_utils, model_util, strategy_base, strategy_sd
import library.train_util as train_util
from library.train_util import DreamBoothDataset
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import library.huggingface_util as huggingface_util
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import (
apply_snr_weight,
get_weighted_text_embeddings,
prepare_scheduler_for_custom_training,
scale_v_prediction_loss_like_noise_prediction,
add_v_prediction_like_loss,
apply_debiased_estimation,
apply_masked_loss,
)
from library.utils import setup_logging, add_logging_arguments
setup_logging()
import logging
logger = logging.getLogger(__name__)
class NetworkTrainer:
def __init__(self):
self.vae_scale_factor = 0.18215
self.is_sdxl = False
# TODO 他のスクリプトと共通化する
def generate_step_logs(
self,
args: argparse.Namespace,
current_loss,
avr_loss,
lr_scheduler,
lr_descriptions,
keys_scaled=None,
mean_norm=None,
maximum_norm=None,
):
logs = {"loss/current": current_loss, "loss/average": avr_loss}
if keys_scaled is not None:
logs["max_norm/keys_scaled"] = keys_scaled
logs["max_norm/average_key_norm"] = mean_norm
logs["max_norm/max_key_norm"] = maximum_norm
lrs = lr_scheduler.get_last_lr()
for i, lr in enumerate(lrs):
if lr_descriptions is not None:
lr_desc = lr_descriptions[i]
else:
idx = i - (0 if args.network_train_unet_only else -1)
if idx == -1:
lr_desc = "textencoder"
else:
if len(lrs) > 2:
lr_desc = f"group{idx}"
else:
lr_desc = "unet"
logs[f"lr/{lr_desc}"] = lr
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower():
# tracking d*lr value
logs[f"lr/d*lr/{lr_desc}"] = (
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
)
return logs
def assert_extra_args(self, args, train_dataset_group):
train_dataset_group.verify_bucket_reso_steps(64)
def load_target_model(self, args, weight_dtype, accelerator):
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype, accelerator)
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える
vae.set_use_memory_efficient_attention_xformers(args.xformers)
return model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization), text_encoder, vae, unet
def get_tokenize_strategy(self, args):
return strategy_sd.SdTokenizeStrategy(args.v2, args.max_token_length, args.tokenizer_cache_dir)
def get_tokenizers(self, tokenize_strategy: strategy_sd.SdTokenizeStrategy) -> List[Any]:
return [tokenize_strategy.tokenizer]
def get_latents_caching_strategy(self, args):
latents_caching_strategy = strategy_sd.SdSdxlLatentsCachingStrategy(
True, args.cache_latents_to_disk, args.vae_batch_size, args.skip_cache_check
)
return latents_caching_strategy
def get_text_encoding_strategy(self, args):
return strategy_sd.SdTextEncodingStrategy(args.clip_skip)
def get_text_encoder_outputs_caching_strategy(self, args):
return None
def get_models_for_text_encoding(self, args, accelerator, text_encoders):
"""
Returns a list of models that will be used for text encoding. SDXL uses wrapped and unwrapped models.
FLUX.1 and SD3 may cache some outputs of the text encoder, so return the models that will be used for encoding (not cached).
"""
return text_encoders
# returns a list of bool values indicating whether each text encoder should be trained
def get_text_encoders_train_flags(self, args, text_encoders):
return [True] * len(text_encoders) if self.is_train_text_encoder(args) else [False] * len(text_encoders)
def is_train_text_encoder(self, args):
return not args.network_train_unet_only
def cache_text_encoder_outputs_if_needed(self, args, accelerator, unet, vae, text_encoders, dataset, weight_dtype):
for t_enc in text_encoders:
t_enc.to(accelerator.device, dtype=weight_dtype)
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype, **kwargs):
noise_pred = unet(noisy_latents, timesteps, text_conds[0]).sample
return noise_pred
def all_reduce_network(self, accelerator, network):
for param in network.parameters():
if param.grad is not None:
param.grad = accelerator.reduce(param.grad, reduction="mean")
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizers, text_encoder, unet):
train_util.sample_images(accelerator, args, epoch, global_step, device, vae, tokenizers[0], text_encoder, unet)
# region SD/SDXL
def post_process_network(self, args, accelerator, network, text_encoders, unet):
pass
def get_noise_scheduler(self, args: argparse.Namespace, device: torch.device) -> Any:
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
prepare_scheduler_for_custom_training(noise_scheduler, device)
if args.zero_terminal_snr:
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
return noise_scheduler
def encode_images_to_latents(self, args, accelerator, vae, images):
return vae.encode(images).latent_dist.sample()
def shift_scale_latents(self, args, latents):
return latents * self.vae_scale_factor
def get_noise_pred_and_target(
self,
args,
accelerator,
noise_scheduler,
latents,
batch,
text_encoder_conds,
unet,
network,
weight_dtype,
train_unet,
):
# Sample noise, sample a random timestep for each image, and add noise to the latents,
# with noise offset and/or multires noise if specified
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents)
# ensure the hidden state will require grad
if args.gradient_checkpointing:
for x in noisy_latents:
x.requires_grad_(True)
for t in text_encoder_conds:
t.requires_grad_(True)
# Predict the noise residual
with accelerator.autocast():
noise_pred = self.call_unet(
args,
accelerator,
unet,
noisy_latents.requires_grad_(train_unet),
timesteps,
text_encoder_conds,
batch,
weight_dtype,
)
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
# differential output preservation
if "custom_attributes" in batch:
diff_output_pr_indices = []
for i, custom_attributes in enumerate(batch["custom_attributes"]):
if "diff_output_preservation" in custom_attributes and custom_attributes["diff_output_preservation"]:
diff_output_pr_indices.append(i)
if len(diff_output_pr_indices) > 0:
network.set_multiplier(0.0)
with torch.no_grad(), accelerator.autocast():
noise_pred_prior = self.call_unet(
args,
accelerator,
unet,
noisy_latents,
timesteps,
text_encoder_conds,
batch,
weight_dtype,
indices=diff_output_pr_indices,
)
network.set_multiplier(1.0) # may be overwritten by "network_multipliers" in the next step
target[diff_output_pr_indices] = noise_pred_prior.to(target.dtype)
return noise_pred, target, timesteps, huber_c, None
def post_process_loss(self, loss, args, timesteps, noise_scheduler):
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
if args.scale_v_pred_loss_like_noise_pred:
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
if args.v_pred_like_loss:
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
if args.debiased_estimation_loss:
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler, args.v_parameterization)
return loss
def get_sai_model_spec(self, args):
return train_util.get_sai_model_spec(None, args, self.is_sdxl, True, False)
def update_metadata(self, metadata, args):
pass
def is_text_encoder_not_needed_for_training(self, args):
return False # use for sample images
def prepare_text_encoder_grad_ckpt_workaround(self, index, text_encoder):
# set top parameter requires_grad = True for gradient checkpointing works
text_encoder.text_model.embeddings.requires_grad_(True)
def prepare_text_encoder_fp8(self, index, text_encoder, te_weight_dtype, weight_dtype):
text_encoder.text_model.embeddings.to(dtype=weight_dtype)
def on_step_start(self, args, accelerator, network, text_encoders, unet, batch, weight_dtype):
pass
# endregion
def train(self, args):
session_id = random.randint(0, 2**32)
training_started_at = time.time()
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
deepspeed_utils.prepare_deepspeed_args(args)
setup_logging(args, reset=True)
cache_latents = args.cache_latents
use_dreambooth_method = args.in_json is None
use_user_config = args.dataset_config is not None
if args.seed is None:
args.seed = random.randint(0, 2**32)
set_seed(args.seed)
tokenize_strategy = self.get_tokenize_strategy(args)
strategy_base.TokenizeStrategy.set_strategy(tokenize_strategy)
tokenizers = self.get_tokenizers(tokenize_strategy) # will be removed after sample_image is refactored
# prepare caching strategy: this must be set before preparing dataset. because dataset may use this strategy for initialization.
latents_caching_strategy = self.get_latents_caching_strategy(args)
strategy_base.LatentsCachingStrategy.set_strategy(latents_caching_strategy)
# データセットを準備する
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True))
if use_user_config:
logger.info(f"Loading dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignoring the following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
if use_dreambooth_method:
logger.info("Using DreamBooth method.")
user_config = {
"datasets": [
{
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
args.train_data_dir, args.reg_data_dir
)
}
]
}
else:
logger.info("Training with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
# use arbitrary dataset class
train_dataset_group = train_util.load_arbitrary_dataset(args)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
if args.debug_dataset:
train_dataset_group.set_current_strategies() # dasaset needs to know the strategies explicitly
train_util.debug_dataset(train_dataset_group)
return
if len(train_dataset_group) == 0:
logger.error(
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
self.assert_extra_args(args, train_dataset_group) # may change some args
# acceleratorを準備する
logger.info("preparing accelerator")
accelerator = train_util.prepare_accelerator(args)
is_main_process = accelerator.is_main_process
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
# モデルを読み込む
model_version, text_encoder, vae, unet = self.load_target_model(args, weight_dtype, accelerator)
# text_encoder is List[CLIPTextModel] or CLIPTextModel
text_encoders = text_encoder if isinstance(text_encoder, list) else [text_encoder]
# 差分追加学習のためにモデルを読み込む
sys.path.append(os.path.dirname(__file__))
accelerator.print("import network module:", args.network_module)
network_module = importlib.import_module(args.network_module)
if args.base_weights is not None:
# base_weights が指定されている場合は、指定された重みを読み込みマージする
for i, weight_path in enumerate(args.base_weights):
if args.base_weights_multiplier is None or len(args.base_weights_multiplier) <= i:
multiplier = 1.0
else:
multiplier = args.base_weights_multiplier[i]
accelerator.print(f"merging module: {weight_path} with multiplier {multiplier}")
module, weights_sd = network_module.create_network_from_weights(
multiplier, weight_path, vae, text_encoder, unet, for_inference=True
)
module.merge_to(text_encoder, unet, weights_sd, weight_dtype, accelerator.device if args.lowram else "cpu")
accelerator.print(f"all weights merged: {', '.join(args.base_weights)}")
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=vae_dtype)
vae.requires_grad_(False)
vae.eval()
train_dataset_group.new_cache_latents(vae, accelerator)
vae.to("cpu")
clean_memory_on_device(accelerator.device)
accelerator.wait_for_everyone()
# 必要ならテキストエンコーダーの出力をキャッシュする: Text Encoderはcpuまたはgpuへ移される
# cache text encoder outputs if needed: Text Encoder is moved to cpu or gpu
text_encoding_strategy = self.get_text_encoding_strategy(args)
strategy_base.TextEncodingStrategy.set_strategy(text_encoding_strategy)
text_encoder_outputs_caching_strategy = self.get_text_encoder_outputs_caching_strategy(args)
if text_encoder_outputs_caching_strategy is not None:
strategy_base.TextEncoderOutputsCachingStrategy.set_strategy(text_encoder_outputs_caching_strategy)
self.cache_text_encoder_outputs_if_needed(args, accelerator, unet, vae, text_encoders, train_dataset_group, weight_dtype)
# prepare network
net_kwargs = {}
if args.network_args is not None:
for net_arg in args.network_args:
key, value = net_arg.split("=")
net_kwargs[key] = value
# if a new network is added in future, add if ~ then blocks for each network (;'∀')
if args.dim_from_weights:
network, _ = network_module.create_network_from_weights(1, args.network_weights, vae, text_encoder, unet, **net_kwargs)
else:
if "dropout" not in net_kwargs:
# workaround for LyCORIS (;^ω^)
net_kwargs["dropout"] = args.network_dropout
network = network_module.create_network(
1.0,
args.network_dim,
args.network_alpha,
vae,
text_encoder,
unet,
neuron_dropout=args.network_dropout,
**net_kwargs,
)
if network is None:
return
network_has_multiplier = hasattr(network, "set_multiplier")
if hasattr(network, "prepare_network"):
network.prepare_network(args)
if args.scale_weight_norms and not hasattr(network, "apply_max_norm_regularization"):
logger.warning(
"warning: scale_weight_norms is specified but the network does not support it / scale_weight_normsが指定されていますが、ネットワークが対応していません"
)
args.scale_weight_norms = False
self.post_process_network(args, accelerator, network, text_encoders, unet)
# apply network to unet and text_encoder
train_unet = not args.network_train_text_encoder_only
train_text_encoder = self.is_train_text_encoder(args)
network.apply_to(text_encoder, unet, train_text_encoder, train_unet)
if args.network_weights is not None:
# FIXME consider alpha of weights: this assumes that the alpha is not changed
info = network.load_weights(args.network_weights)
accelerator.print(f"load network weights from {args.network_weights}: {info}")
if args.gradient_checkpointing:
if args.cpu_offload_checkpointing:
unet.enable_gradient_checkpointing(cpu_offload=True)
else:
unet.enable_gradient_checkpointing()
for t_enc, flag in zip(text_encoders, self.get_text_encoders_train_flags(args, text_encoders)):
if flag:
if t_enc.supports_gradient_checkpointing:
t_enc.gradient_checkpointing_enable()
del t_enc
network.enable_gradient_checkpointing() # may have no effect
# 学習に必要なクラスを準備する
accelerator.print("prepare optimizer, data loader etc.")
# make backward compatibility for text_encoder_lr
support_multiple_lrs = hasattr(network, "prepare_optimizer_params_with_multiple_te_lrs")
if support_multiple_lrs:
text_encoder_lr = args.text_encoder_lr
else:
# toml backward compatibility
if args.text_encoder_lr is None or isinstance(args.text_encoder_lr, float) or isinstance(args.text_encoder_lr, int):
text_encoder_lr = args.text_encoder_lr
else:
text_encoder_lr = None if len(args.text_encoder_lr) == 0 else args.text_encoder_lr[0]
try:
if support_multiple_lrs:
results = network.prepare_optimizer_params_with_multiple_te_lrs(text_encoder_lr, args.unet_lr, args.learning_rate)
else:
results = network.prepare_optimizer_params(text_encoder_lr, args.unet_lr, args.learning_rate)
if type(results) is tuple:
trainable_params = results[0]
lr_descriptions = results[1]
else:
trainable_params = results
lr_descriptions = None
except TypeError as e:
trainable_params = network.prepare_optimizer_params(text_encoder_lr, args.unet_lr)
lr_descriptions = None
# if len(trainable_params) == 0:
# accelerator.print("no trainable parameters found / 学習可能なパラメータが見つかりませんでした")
# for params in trainable_params:
# for k, v in params.items():
# if type(v) == float:
# pass
# else:
# v = len(v)
# accelerator.print(f"trainable_params: {k} = {v}")
optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params)
optimizer_train_fn, optimizer_eval_fn = train_util.get_optimizer_train_eval_fn(optimizer, args)
# prepare dataloader
# strategies are set here because they cannot be referenced in another process. Copy them with the dataset
# some strategies can be None
train_dataset_group.set_current_strategies()
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
accelerator.print(
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
)
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
network.to(weight_dtype)
elif args.full_bf16:
assert (
args.mixed_precision == "bf16"
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
accelerator.print("enable full bf16 training.")
network.to(weight_dtype)
unet_weight_dtype = te_weight_dtype = weight_dtype
# Experimental Feature: Put base model into fp8 to save vram
if args.fp8_base or args.fp8_base_unet:
assert torch.__version__ >= "2.1.0", "fp8_base requires torch>=2.1.0 / fp8を使う場合はtorch>=2.1.0が必要です。"
assert (
args.mixed_precision != "no"
), "fp8_base requires mixed precision='fp16' or 'bf16' / fp8を使う場合はmixed_precision='fp16'または'bf16'が必要です。"
accelerator.print("enable fp8 training for U-Net.")
unet_weight_dtype = torch.float8_e4m3fn
if not args.fp8_base_unet:
accelerator.print("enable fp8 training for Text Encoder.")
te_weight_dtype = weight_dtype if args.fp8_base_unet else torch.float8_e4m3fn
# unet.to(accelerator.device) # this makes faster `to(dtype)` below, but consumes 23 GB VRAM
# unet.to(dtype=unet_weight_dtype) # without moving to gpu, this takes a lot of time and main memory
logger.info(f"set U-Net weight dtype to {unet_weight_dtype}, device to {accelerator.device}")
unet.to(accelerator.device, dtype=unet_weight_dtype) # this seems to be safer than above
unet.requires_grad_(False)
unet.to(dtype=unet_weight_dtype)
for i, t_enc in enumerate(text_encoders):
t_enc.requires_grad_(False)
# in case of cpu, dtype is already set to fp32 because cpu does not support fp8/fp16/bf16
if t_enc.device.type != "cpu":
t_enc.to(dtype=te_weight_dtype)
# nn.Embedding not support FP8
if te_weight_dtype != weight_dtype:
self.prepare_text_encoder_fp8(i, t_enc, te_weight_dtype, weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい / accelerator will do something good
if args.deepspeed:
flags = self.get_text_encoders_train_flags(args, text_encoders)
ds_model = deepspeed_utils.prepare_deepspeed_model(
args,
unet=unet if train_unet else None,
text_encoder1=text_encoders[0] if flags[0] else None,
text_encoder2=(text_encoders[1] if flags[1] else None) if len(text_encoders) > 1 else None,
network=network,
)
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
ds_model, optimizer, train_dataloader, lr_scheduler
)
training_model = ds_model
else:
if train_unet:
unet = accelerator.prepare(unet)
else:
unet.to(accelerator.device, dtype=unet_weight_dtype) # move to device because unet is not prepared by accelerator
if train_text_encoder:
text_encoders = [
(accelerator.prepare(t_enc) if flag else t_enc)
for t_enc, flag in zip(text_encoders, self.get_text_encoders_train_flags(args, text_encoders))
]
if len(text_encoders) > 1:
text_encoder = text_encoders
else:
text_encoder = text_encoders[0]
else:
pass # if text_encoder is not trained, no need to prepare. and device and dtype are already set
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
network, optimizer, train_dataloader, lr_scheduler
)
training_model = network
if args.gradient_checkpointing:
# according to TI example in Diffusers, train is required
unet.train()
for i, (t_enc, frag) in enumerate(zip(text_encoders, self.get_text_encoders_train_flags(args, text_encoders))):
t_enc.train()
# set top parameter requires_grad = True for gradient checkpointing works
if frag:
self.prepare_text_encoder_grad_ckpt_workaround(i, t_enc)
else:
unet.eval()
for t_enc in text_encoders:
t_enc.eval()
del t_enc
accelerator.unwrap_model(network).prepare_grad_etc(text_encoder, unet)
if not cache_latents: # キャッシュしない場合はVAEを使うのでVAEを準備する
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=vae_dtype)
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# before resuming make hook for saving/loading to save/load the network weights only
def save_model_hook(models, weights, output_dir):
# pop weights of other models than network to save only network weights
# only main process or deepspeed https://github.com/huggingface/diffusers/issues/2606
if accelerator.is_main_process or args.deepspeed:
remove_indices = []
for i, model in enumerate(models):
if not isinstance(model, type(accelerator.unwrap_model(network))):
remove_indices.append(i)
for i in reversed(remove_indices):
if len(weights) > i:
weights.pop(i)
# print(f"save model hook: {len(weights)} weights will be saved")
# save current ecpoch and step
train_state_file = os.path.join(output_dir, "train_state.json")
# +1 is needed because the state is saved before current_step is set from global_step
logger.info(f"save train state to {train_state_file} at epoch {current_epoch.value} step {current_step.value+1}")
with open(train_state_file, "w", encoding="utf-8") as f:
json.dump({"current_epoch": current_epoch.value, "current_step": current_step.value + 1}, f)
steps_from_state = None
def load_model_hook(models, input_dir):
# remove models except network
remove_indices = []
for i, model in enumerate(models):
if not isinstance(model, type(accelerator.unwrap_model(network))):
remove_indices.append(i)
for i in reversed(remove_indices):
models.pop(i)
# print(f"load model hook: {len(models)} models will be loaded")
# load current epoch and step to
nonlocal steps_from_state
train_state_file = os.path.join(input_dir, "train_state.json")
if os.path.exists(train_state_file):
with open(train_state_file, "r", encoding="utf-8") as f:
data = json.load(f)
steps_from_state = data["current_step"]
logger.info(f"load train state from {train_state_file}: {data}")
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
# TODO: find a way to handle total batch size when there are multiple datasets
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
accelerator.print("running training / 学習開始")
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
accelerator.print(
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
# accelerator.print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
# TODO refactor metadata creation and move to util
metadata = {
"ss_session_id": session_id, # random integer indicating which group of epochs the model came from
"ss_training_started_at": training_started_at, # unix timestamp
"ss_output_name": args.output_name,
"ss_learning_rate": args.learning_rate,
"ss_text_encoder_lr": text_encoder_lr,
"ss_unet_lr": args.unet_lr,
"ss_num_train_images": train_dataset_group.num_train_images,
"ss_num_reg_images": train_dataset_group.num_reg_images,
"ss_num_batches_per_epoch": len(train_dataloader),
"ss_num_epochs": num_train_epochs,
"ss_gradient_checkpointing": args.gradient_checkpointing,
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
"ss_max_train_steps": args.max_train_steps,
"ss_lr_warmup_steps": args.lr_warmup_steps,
"ss_lr_scheduler": args.lr_scheduler,
"ss_network_module": args.network_module,
"ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim
"ss_network_alpha": args.network_alpha, # some networks may not have alpha
"ss_network_dropout": args.network_dropout, # some networks may not have dropout
"ss_mixed_precision": args.mixed_precision,
"ss_full_fp16": bool(args.full_fp16),
"ss_v2": bool(args.v2),
"ss_base_model_version": model_version,
"ss_clip_skip": args.clip_skip,
"ss_max_token_length": args.max_token_length,
"ss_cache_latents": bool(args.cache_latents),
"ss_seed": args.seed,
"ss_lowram": args.lowram,
"ss_noise_offset": args.noise_offset,
"ss_multires_noise_iterations": args.multires_noise_iterations,
"ss_multires_noise_discount": args.multires_noise_discount,
"ss_adaptive_noise_scale": args.adaptive_noise_scale,
"ss_zero_terminal_snr": args.zero_terminal_snr,
"ss_training_comment": args.training_comment, # will not be updated after training
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
"ss_max_grad_norm": args.max_grad_norm,
"ss_caption_dropout_rate": args.caption_dropout_rate,
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs,
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate,
"ss_face_crop_aug_range": args.face_crop_aug_range,
"ss_prior_loss_weight": args.prior_loss_weight,
"ss_min_snr_gamma": args.min_snr_gamma,
"ss_scale_weight_norms": args.scale_weight_norms,
"ss_ip_noise_gamma": args.ip_noise_gamma,
"ss_debiased_estimation": bool(args.debiased_estimation_loss),
"ss_noise_offset_random_strength": args.noise_offset_random_strength,
"ss_ip_noise_gamma_random_strength": args.ip_noise_gamma_random_strength,
"ss_loss_type": args.loss_type,
"ss_huber_schedule": args.huber_schedule,
"ss_huber_c": args.huber_c,
"ss_fp8_base": bool(args.fp8_base),
"ss_fp8_base_unet": bool(args.fp8_base_unet),
}
self.update_metadata(metadata, args) # architecture specific metadata
if use_user_config:
# save metadata of multiple datasets
# NOTE: pack "ss_datasets" value as json one time
# or should also pack nested collections as json?
datasets_metadata = []
tag_frequency = {} # merge tag frequency for metadata editor
dataset_dirs_info = {} # merge subset dirs for metadata editor
for dataset in train_dataset_group.datasets:
is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset)
dataset_metadata = {
"is_dreambooth": is_dreambooth_dataset,
"batch_size_per_device": dataset.batch_size,
"num_train_images": dataset.num_train_images, # includes repeating
"num_reg_images": dataset.num_reg_images,
"resolution": (dataset.width, dataset.height),
"enable_bucket": bool(dataset.enable_bucket),
"min_bucket_reso": dataset.min_bucket_reso,
"max_bucket_reso": dataset.max_bucket_reso,
"tag_frequency": dataset.tag_frequency,
"bucket_info": dataset.bucket_info,
}
subsets_metadata = []
for subset in dataset.subsets:
subset_metadata = {
"img_count": subset.img_count,
"num_repeats": subset.num_repeats,
"color_aug": bool(subset.color_aug),
"flip_aug": bool(subset.flip_aug),
"random_crop": bool(subset.random_crop),
"shuffle_caption": bool(subset.shuffle_caption),
"keep_tokens": subset.keep_tokens,
"keep_tokens_separator": subset.keep_tokens_separator,
"secondary_separator": subset.secondary_separator,
"enable_wildcard": bool(subset.enable_wildcard),
"caption_prefix": subset.caption_prefix,
"caption_suffix": subset.caption_suffix,
}
image_dir_or_metadata_file = None
if subset.image_dir:
image_dir = os.path.basename(subset.image_dir)
subset_metadata["image_dir"] = image_dir
image_dir_or_metadata_file = image_dir
if is_dreambooth_dataset:
subset_metadata["class_tokens"] = subset.class_tokens
subset_metadata["is_reg"] = subset.is_reg
if subset.is_reg:
image_dir_or_metadata_file = None # not merging reg dataset
else:
metadata_file = os.path.basename(subset.metadata_file)
subset_metadata["metadata_file"] = metadata_file
image_dir_or_metadata_file = metadata_file # may overwrite
subsets_metadata.append(subset_metadata)
# merge dataset dir: not reg subset only
# TODO update additional-network extension to show detailed dataset config from metadata
if image_dir_or_metadata_file is not None:
# datasets may have a certain dir multiple times
v = image_dir_or_metadata_file
i = 2
while v in dataset_dirs_info:
v = image_dir_or_metadata_file + f" ({i})"
i += 1
image_dir_or_metadata_file = v
dataset_dirs_info[image_dir_or_metadata_file] = {
"n_repeats": subset.num_repeats,
"img_count": subset.img_count,
}
dataset_metadata["subsets"] = subsets_metadata
datasets_metadata.append(dataset_metadata)
# merge tag frequency:
for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items():
# あるディレクトリが複数のdatasetで使用されている場合、一度だけ数える
# もともと繰り返し回数を指定しているので、キャプション内でのタグの出現回数と、それが学習で何度使われるかは一致しない
# なので、ここで複数datasetの回数を合算してもあまり意味はない
if ds_dir_name in tag_frequency:
continue
tag_frequency[ds_dir_name] = ds_freq_for_dir
metadata["ss_datasets"] = json.dumps(datasets_metadata)
metadata["ss_tag_frequency"] = json.dumps(tag_frequency)
metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info)
else:
# conserving backward compatibility when using train_dataset_dir and reg_dataset_dir
assert (
len(train_dataset_group.datasets) == 1
), f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug. / データセットは1個だけ存在するはずですが、実際には{len(train_dataset_group.datasets)}個でした。プログラムのバグかもしれません。"
dataset = train_dataset_group.datasets[0]
dataset_dirs_info = {}
reg_dataset_dirs_info = {}
if use_dreambooth_method:
for subset in dataset.subsets:
info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info
info[os.path.basename(subset.image_dir)] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count}
else:
for subset in dataset.subsets:
dataset_dirs_info[os.path.basename(subset.metadata_file)] = {
"n_repeats": subset.num_repeats,
"img_count": subset.img_count,
}
metadata.update(
{
"ss_batch_size_per_device": args.train_batch_size,
"ss_total_batch_size": total_batch_size,
"ss_resolution": args.resolution,
"ss_color_aug": bool(args.color_aug),
"ss_flip_aug": bool(args.flip_aug),
"ss_random_crop": bool(args.random_crop),
"ss_shuffle_caption": bool(args.shuffle_caption),
"ss_enable_bucket": bool(dataset.enable_bucket),
"ss_bucket_no_upscale": bool(dataset.bucket_no_upscale),
"ss_min_bucket_reso": dataset.min_bucket_reso,
"ss_max_bucket_reso": dataset.max_bucket_reso,
"ss_keep_tokens": args.keep_tokens,
"ss_dataset_dirs": json.dumps(dataset_dirs_info),
"ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info),
"ss_tag_frequency": json.dumps(dataset.tag_frequency),
"ss_bucket_info": json.dumps(dataset.bucket_info),
}
)
# add extra args
if args.network_args:
metadata["ss_network_args"] = json.dumps(net_kwargs)
# model name and hash
if args.pretrained_model_name_or_path is not None:
sd_model_name = args.pretrained_model_name_or_path
if os.path.exists(sd_model_name):
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name)
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name)
sd_model_name = os.path.basename(sd_model_name)
metadata["ss_sd_model_name"] = sd_model_name
if args.vae is not None:
vae_name = args.vae
if os.path.exists(vae_name):
metadata["ss_vae_hash"] = train_util.model_hash(vae_name)
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name)
vae_name = os.path.basename(vae_name)
metadata["ss_vae_name"] = vae_name
metadata = {k: str(v) for k, v in metadata.items()}
# make minimum metadata for filtering
minimum_metadata = {}
for key in train_util.SS_METADATA_MINIMUM_KEYS:
if key in metadata:
minimum_metadata[key] = metadata[key]
# calculate steps to skip when resuming or starting from a specific step
initial_step = 0
if args.initial_epoch is not None or args.initial_step is not None:
# if initial_epoch or initial_step is specified, steps_from_state is ignored even when resuming
if steps_from_state is not None:
logger.warning(
"steps from the state is ignored because initial_step is specified / initial_stepが指定されているため、stateからのステップ数は無視されます"
)
if args.initial_step is not None:
initial_step = args.initial_step
else:
# num steps per epoch is calculated by num_processes and gradient_accumulation_steps
initial_step = (args.initial_epoch - 1) * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
else:
# if initial_epoch and initial_step are not specified, steps_from_state is used when resuming
if steps_from_state is not None:
initial_step = steps_from_state
steps_from_state = None
if initial_step > 0:
assert (
args.max_train_steps > initial_step
), f"max_train_steps should be greater than initial step / max_train_stepsは初期ステップより大きい必要があります: {args.max_train_steps} vs {initial_step}"
progress_bar = tqdm(
range(args.max_train_steps - initial_step), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps"
)
epoch_to_start = 0
if initial_step > 0:
if args.skip_until_initial_step:
# if skip_until_initial_step is specified, load data and discard it to ensure the same data is used
if not args.resume:
logger.info(
f"initial_step is specified but not resuming. lr scheduler will be started from the beginning / initial_stepが指定されていますがresumeしていないため、lr schedulerは最初から始まります"
)
logger.info(f"skipping {initial_step} steps / {initial_step}ステップをスキップします")
initial_step *= args.gradient_accumulation_steps
# set epoch to start to make initial_step less than len(train_dataloader)
epoch_to_start = initial_step // math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
else:
# if not, only epoch no is skipped for informative purpose
epoch_to_start = initial_step // math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
initial_step = 0 # do not skip
global_step = 0
noise_scheduler = self.get_noise_scheduler(args, accelerator.device)
if accelerator.is_main_process:
init_kwargs = {}
if args.wandb_run_name:
init_kwargs["wandb"] = {"name": args.wandb_run_name}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers(
"network_train" if args.log_tracker_name is None else args.log_tracker_name,
config=train_util.get_sanitized_config_or_none(args),
init_kwargs=init_kwargs,
)
loss_recorder = train_util.LossRecorder()
del train_dataset_group
# callback for step start
if hasattr(accelerator.unwrap_model(network), "on_step_start"):
on_step_start_for_network = accelerator.unwrap_model(network).on_step_start
else:
on_step_start_for_network = lambda *args, **kwargs: None
# function for saving/removing
def save_model(ckpt_name, unwrapped_nw, steps, epoch_no, force_sync_upload=False):
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, ckpt_name)
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
metadata["ss_training_finished_at"] = str(time.time())
metadata["ss_steps"] = str(steps)
metadata["ss_epoch"] = str(epoch_no)
metadata_to_save = minimum_metadata if args.no_metadata else metadata
sai_metadata = self.get_sai_model_spec(args)
metadata_to_save.update(sai_metadata)
unwrapped_nw.save_weights(ckpt_file, save_dtype, metadata_to_save)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
def remove_model(old_ckpt_name):
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
# if text_encoder is not needed for training, delete it to save memory.
# TODO this can be automated after SDXL sample prompt cache is implemented
if self.is_text_encoder_not_needed_for_training(args):
logger.info("text_encoder is not needed for training. deleting to save memory.")
for t_enc in text_encoders:
del t_enc
text_encoders = []
text_encoder = None
# For --sample_at_first
optimizer_eval_fn()
self.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizers, text_encoder, unet)
optimizer_train_fn()
if len(accelerator.trackers) > 0:
# log empty object to commit the sample images to wandb
accelerator.log({}, step=0)
# training loop
if initial_step > 0: # only if skip_until_initial_step is specified
for skip_epoch in range(epoch_to_start): # skip epochs
logger.info(f"skipping epoch {skip_epoch+1} because initial_step (multiplied) is {initial_step}")
initial_step -= len(train_dataloader)
global_step = initial_step
# log device and dtype for each model
logger.info(f"unet dtype: {unet_weight_dtype}, device: {unet.device}")
for i, t_enc in enumerate(text_encoders):
params_itr = t_enc.parameters()
params_itr.__next__() # skip the first parameter
params_itr.__next__() # skip the second parameter. because CLIP first two parameters are embeddings
param_3rd = params_itr.__next__()
logger.info(f"text_encoder [{i}] dtype: {param_3rd.dtype}, device: {t_enc.device}")
clean_memory_on_device(accelerator.device)
for epoch in range(epoch_to_start, num_train_epochs):
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
metadata["ss_epoch"] = str(epoch + 1)
accelerator.unwrap_model(network).on_epoch_start(text_encoder, unet)
skipped_dataloader = None
if initial_step > 0:
skipped_dataloader = accelerator.skip_first_batches(train_dataloader, initial_step - 1)
initial_step = 1
for step, batch in enumerate(skipped_dataloader or train_dataloader):
current_step.value = global_step
if initial_step > 0:
initial_step -= 1
continue
with accelerator.accumulate(training_model):
on_step_start_for_network(text_encoder, unet)
# temporary, for batch processing
self.on_step_start(args, accelerator, network, text_encoders, unet, batch, weight_dtype)
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
else:
with torch.no_grad():
# latentに変換
latents = self.encode_images_to_latents(args, accelerator, vae, batch["images"].to(vae_dtype))
latents = latents.to(dtype=weight_dtype)
# NaNが含まれていれば警告を表示し0に置き換える
if torch.any(torch.isnan(latents)):
accelerator.print("NaN found in latents, replacing with zeros")
latents = torch.nan_to_num(latents, 0, out=latents)
latents = self.shift_scale_latents(args, latents)
# get multiplier for each sample
if network_has_multiplier:
multipliers = batch["network_multipliers"]
# if all multipliers are same, use single multiplier
if torch.all(multipliers == multipliers[0]):
multipliers = multipliers[0].item()
else:
raise NotImplementedError("multipliers for each sample is not supported yet")
# print(f"set multiplier: {multipliers}")
accelerator.unwrap_model(network).set_multiplier(multipliers)
text_encoder_conds = []
text_encoder_outputs_list = batch.get("text_encoder_outputs_list", None)
if text_encoder_outputs_list is not None:
text_encoder_conds = text_encoder_outputs_list # List of text encoder outputs
if len(text_encoder_conds) == 0 or text_encoder_conds[0] is None or train_text_encoder:
# TODO this does not work if 'some text_encoders are trained' and 'some are not and not cached'
with torch.set_grad_enabled(train_text_encoder), accelerator.autocast():
# Get the text embedding for conditioning
if args.weighted_captions:
input_ids_list, weights_list = tokenize_strategy.tokenize_with_weights(batch["captions"])
encoded_text_encoder_conds = text_encoding_strategy.encode_tokens_with_weights(
tokenize_strategy,
self.get_models_for_text_encoding(args, accelerator, text_encoders),
input_ids_list,
weights_list,
)
else:
input_ids = [ids.to(accelerator.device) for ids in batch["input_ids_list"]]
encoded_text_encoder_conds = text_encoding_strategy.encode_tokens(
tokenize_strategy,
self.get_models_for_text_encoding(args, accelerator, text_encoders),
input_ids,
)
if args.full_fp16:
encoded_text_encoder_conds = [c.to(weight_dtype) for c in encoded_text_encoder_conds]
# if text_encoder_conds is not cached, use encoded_text_encoder_conds
if len(text_encoder_conds) == 0:
text_encoder_conds = encoded_text_encoder_conds
else:
# if encoded_text_encoder_conds is not None, update cached text_encoder_conds
for i in range(len(encoded_text_encoder_conds)):
if encoded_text_encoder_conds[i] is not None:
text_encoder_conds[i] = encoded_text_encoder_conds[i]
# sample noise, call unet, get target
noise_pred, target, timesteps, huber_c, weighting = self.get_noise_pred_and_target(
args,
accelerator,
noise_scheduler,
latents,
batch,
text_encoder_conds,
unet,
network,
weight_dtype,
train_unet,
)
loss = train_util.conditional_loss(
noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c
)
if weighting is not None:
loss = loss * weighting
if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None):
loss = apply_masked_loss(loss, batch)
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
# min snr gamma, scale v pred loss like noise pred, v pred like loss, debiased estimation etc.
loss = self.post_process_loss(loss, args, timesteps, noise_scheduler)
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients:
self.all_reduce_network(accelerator, network) # sync DDP grad manually
if args.max_grad_norm != 0.0:
params_to_clip = accelerator.unwrap_model(network).get_trainable_params()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
if args.scale_weight_norms:
keys_scaled, mean_norm, maximum_norm = accelerator.unwrap_model(network).apply_max_norm_regularization(
args.scale_weight_norms, accelerator.device
)
max_mean_logs = {"Keys Scaled": keys_scaled, "Average key norm": mean_norm}
else:
keys_scaled, mean_norm, maximum_norm = None, None, None
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
optimizer_eval_fn()
self.sample_images(
accelerator, args, None, global_step, accelerator.device, vae, tokenizers, text_encoder, unet
)
# 指定ステップごとにモデルを保存
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step)
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch)
if args.save_state:
train_util.save_and_remove_state_stepwise(args, accelerator, global_step)
remove_step_no = train_util.get_remove_step_no(args, global_step)
if remove_step_no is not None:
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no)
remove_model(remove_ckpt_name)
optimizer_train_fn()
current_loss = loss.detach().item()
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
avr_loss: float = loss_recorder.moving_average
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if args.scale_weight_norms:
progress_bar.set_postfix(**{**max_mean_logs, **logs})
if len(accelerator.trackers) > 0:
logs = self.generate_step_logs(
args, current_loss, avr_loss, lr_scheduler, lr_descriptions, keys_scaled, mean_norm, maximum_norm
)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if len(accelerator.trackers) > 0:
logs = {"loss/epoch": loss_recorder.moving_average}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
# 指定エポックごとにモデルを保存
optimizer_eval_fn()
if args.save_every_n_epochs is not None:
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
if is_main_process and saving:
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1)
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch + 1)
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1)
if remove_epoch_no is not None:
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no)
remove_model(remove_ckpt_name)
if args.save_state:
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
self.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizers, text_encoder, unet)
optimizer_train_fn()
# end of epoch
# metadata["ss_epoch"] = str(num_train_epochs)
metadata["ss_training_finished_at"] = str(time.time())
if is_main_process:
network = accelerator.unwrap_model(network)
accelerator.end_training()
optimizer_eval_fn()
if is_main_process and (args.save_state or args.save_state_on_train_end):
train_util.save_state_on_train_end(args, accelerator)
if is_main_process:
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as)
save_model(ckpt_name, network, global_step, num_train_epochs, force_sync_upload=True)
logger.info("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
add_logging_arguments(parser)
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, True, True, True)
train_util.add_training_arguments(parser, True)
train_util.add_masked_loss_arguments(parser)
deepspeed_utils.add_deepspeed_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)
parser.add_argument(
"--cpu_offload_checkpointing",
action="store_true",
help="[EXPERIMENTAL] enable offloading of tensors to CPU during checkpointing for U-Net or DiT, if supported"
" / 勾配チェックポイント時にテンソルをCPUにオフロードする(U-NetまたはDiTのみ、サポートされている場合)",
)
parser.add_argument(
"--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない"
)
parser.add_argument(
"--save_model_as",
type=str,
default="safetensors",
choices=[None, "ckpt", "pt", "safetensors"],
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)",
)
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率")
parser.add_argument(
"--text_encoder_lr",
type=float,
default=None,
nargs="*",
help="learning rate for Text Encoder, can be multiple / Text Encoderの学習率、複数指定可能",
)
parser.add_argument(
"--fp8_base_unet",
action="store_true",
help="use fp8 for U-Net (or DiT), Text Encoder is fp16 or bf16"
" / U-Net(またはDiT)にfp8を使用する。Text Encoderはfp16またはbf16",
)
parser.add_argument(
"--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み"
)
parser.add_argument(
"--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール"
)
parser.add_argument(
"--network_dim",
type=int,
default=None,
help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)",
)
parser.add_argument(
"--network_alpha",
type=float,
default=1,
help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)",
)
parser.add_argument(
"--network_dropout",
type=float,
default=None,
help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)",
)
parser.add_argument(
"--network_args",
type=str,
default=None,
nargs="*",
help="additional arguments for network (key=value) / ネットワークへの追加の引数",
)
parser.add_argument(
"--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する"
)
parser.add_argument(
"--network_train_text_encoder_only",
action="store_true",
help="only training Text Encoder part / Text Encoder関連部分のみ学習する",
)
parser.add_argument(
"--training_comment",
type=str,
default=None,
help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列",
)
parser.add_argument(
"--dim_from_weights",
action="store_true",
help="automatically determine dim (rank) from network_weights / dim (rank)をnetwork_weightsで指定した重みから自動で決定する",
)
parser.add_argument(
"--scale_weight_norms",
type=float,
default=None,
help="Scale the weight of each key pair to help prevent overtraing via exploding gradients. (1 is a good starting point) / 重みの値をスケーリングして勾配爆発を防ぐ(1が初期値としては適当)",
)
parser.add_argument(
"--base_weights",
type=str,
default=None,
nargs="*",
help="network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みファイル",
)
parser.add_argument(
"--base_weights_multiplier",
type=float,
default=None,
nargs="*",
help="multiplier for network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みの倍率",
)
parser.add_argument(
"--no_half_vae",
action="store_true",
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
)
parser.add_argument(
"--skip_until_initial_step",
action="store_true",
help="skip training until initial_step is reached / initial_stepに到達するまで学習をスキップする",
)
parser.add_argument(
"--initial_epoch",
type=int,
default=None,
help="initial epoch number, 1 means first epoch (same as not specifying). NOTE: initial_epoch/step doesn't affect to lr scheduler. Which means lr scheduler will start from 0 without `--resume`."
+ " / 初期エポック数、1で最初のエポック(未指定時と同じ)。注意:initial_epoch/stepはlr schedulerに影響しないため、`--resume`しない場合はlr schedulerは0から始まる",
)
parser.add_argument(
"--initial_step",
type=int,
default=None,
help="initial step number including all epochs, 0 means first step (same as not specifying). overwrites initial_epoch."
+ " / 初期ステップ数、全エポックを含むステップ数、0で最初のステップ(未指定時と同じ)。initial_epochを上書きする",
)
# parser.add_argument("--loraplus_lr_ratio", default=None, type=float, help="LoRA+ learning rate ratio")
# parser.add_argument("--loraplus_unet_lr_ratio", default=None, type=float, help="LoRA+ UNet learning rate ratio")
# parser.add_argument("--loraplus_text_encoder_lr_ratio", default=None, type=float, help="LoRA+ text encoder learning rate ratio")
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
trainer = NetworkTrainer()
trainer.train(args)
|