File size: 48,908 Bytes
c1bc1cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
# temporary minimum implementation of LoRA
# FLUX doesn't have Conv2d, so we ignore it
# TODO commonize with the original implementation

# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py

import math
import os
from typing import Dict, List, Optional, Tuple, Type, Union
from diffusers import AutoencoderKL
from transformers import CLIPTextModel
import numpy as np
import torch
import re
from library.utils import setup_logging
from library.sdxl_original_unet import SdxlUNet2DConditionModel

setup_logging()
import logging

logger = logging.getLogger(__name__)


NUM_DOUBLE_BLOCKS = 19
NUM_SINGLE_BLOCKS = 38


class LoRAModule(torch.nn.Module):
    """
    replaces forward method of the original Linear, instead of replacing the original Linear module.
    """

    def __init__(
        self,
        lora_name,
        org_module: torch.nn.Module,
        multiplier=1.0,
        lora_dim=4,
        alpha=1,
        dropout=None,
        rank_dropout=None,
        module_dropout=None,
        split_dims: Optional[List[int]] = None,
    ):
        """
        if alpha == 0 or None, alpha is rank (no scaling).

        split_dims is used to mimic the split qkv of FLUX as same as Diffusers
        """
        super().__init__()
        self.lora_name = lora_name

        if org_module.__class__.__name__ == "Conv2d":
            in_dim = org_module.in_channels
            out_dim = org_module.out_channels
        else:
            in_dim = org_module.in_features
            out_dim = org_module.out_features

        self.lora_dim = lora_dim
        self.split_dims = split_dims

        if split_dims is None:
            if org_module.__class__.__name__ == "Conv2d":
                kernel_size = org_module.kernel_size
                stride = org_module.stride
                padding = org_module.padding
                self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
                self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
            else:
                self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
                self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)

            torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
            torch.nn.init.zeros_(self.lora_up.weight)
        else:
            # conv2d not supported
            assert sum(split_dims) == out_dim, "sum of split_dims must be equal to out_dim"
            assert org_module.__class__.__name__ == "Linear", "split_dims is only supported for Linear"
            # print(f"split_dims: {split_dims}")
            self.lora_down = torch.nn.ModuleList(
                [torch.nn.Linear(in_dim, self.lora_dim, bias=False) for _ in range(len(split_dims))]
            )
            self.lora_up = torch.nn.ModuleList([torch.nn.Linear(self.lora_dim, split_dim, bias=False) for split_dim in split_dims])
            for lora_down in self.lora_down:
                torch.nn.init.kaiming_uniform_(lora_down.weight, a=math.sqrt(5))
            for lora_up in self.lora_up:
                torch.nn.init.zeros_(lora_up.weight)

        if type(alpha) == torch.Tensor:
            alpha = alpha.detach().float().numpy()  # without casting, bf16 causes error
        alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
        self.scale = alpha / self.lora_dim
        self.register_buffer("alpha", torch.tensor(alpha))  # 定数として扱える

        # same as microsoft's
        self.multiplier = multiplier
        self.org_module = org_module  # remove in applying
        self.dropout = dropout
        self.rank_dropout = rank_dropout
        self.module_dropout = module_dropout

    def apply_to(self):
        self.org_forward = self.org_module.forward
        self.org_module.forward = self.forward
        del self.org_module

    def forward(self, x):
        org_forwarded = self.org_forward(x)

        # module dropout
        if self.module_dropout is not None and self.training:
            if torch.rand(1) < self.module_dropout:
                return org_forwarded

        if self.split_dims is None:
            lx = self.lora_down(x)

            # normal dropout
            if self.dropout is not None and self.training:
                lx = torch.nn.functional.dropout(lx, p=self.dropout)

            # rank dropout
            if self.rank_dropout is not None and self.training:
                mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
                if len(lx.size()) == 3:
                    mask = mask.unsqueeze(1)  # for Text Encoder
                elif len(lx.size()) == 4:
                    mask = mask.unsqueeze(-1).unsqueeze(-1)  # for Conv2d
                lx = lx * mask

                # scaling for rank dropout: treat as if the rank is changed
                # maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
                scale = self.scale * (1.0 / (1.0 - self.rank_dropout))  # redundant for readability
            else:
                scale = self.scale

            lx = self.lora_up(lx)

            return org_forwarded + lx * self.multiplier * scale
        else:
            lxs = [lora_down(x) for lora_down in self.lora_down]

            # normal dropout
            if self.dropout is not None and self.training:
                lxs = [torch.nn.functional.dropout(lx, p=self.dropout) for lx in lxs]

            # rank dropout
            if self.rank_dropout is not None and self.training:
                masks = [torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout for lx in lxs]
                for i in range(len(lxs)):
                    if len(lx.size()) == 3:
                        masks[i] = masks[i].unsqueeze(1)
                    elif len(lx.size()) == 4:
                        masks[i] = masks[i].unsqueeze(-1).unsqueeze(-1)
                    lxs[i] = lxs[i] * masks[i]

                # scaling for rank dropout: treat as if the rank is changed
                scale = self.scale * (1.0 / (1.0 - self.rank_dropout))  # redundant for readability
            else:
                scale = self.scale

            lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]

            return org_forwarded + torch.cat(lxs, dim=-1) * self.multiplier * scale


class LoRAInfModule(LoRAModule):
    def __init__(
        self,
        lora_name,
        org_module: torch.nn.Module,
        multiplier=1.0,
        lora_dim=4,
        alpha=1,
        **kwargs,
    ):
        # no dropout for inference
        super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)

        self.org_module_ref = [org_module]  # 後から参照できるように
        self.enabled = True
        self.network: LoRANetwork = None

    def set_network(self, network):
        self.network = network

    # freezeしてマージする
    def merge_to(self, sd, dtype, device):
        # extract weight from org_module
        org_sd = self.org_module.state_dict()
        weight = org_sd["weight"]
        org_dtype = weight.dtype
        org_device = weight.device
        weight = weight.to(torch.float)  # calc in float

        if dtype is None:
            dtype = org_dtype
        if device is None:
            device = org_device

        if self.split_dims is None:
            # get up/down weight
            down_weight = sd["lora_down.weight"].to(torch.float).to(device)
            up_weight = sd["lora_up.weight"].to(torch.float).to(device)

            # merge weight
            if len(weight.size()) == 2:
                # linear
                weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
            elif down_weight.size()[2:4] == (1, 1):
                # conv2d 1x1
                weight = (
                    weight
                    + self.multiplier
                    * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
                    * self.scale
                )
            else:
                # conv2d 3x3
                conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
                # logger.info(conved.size(), weight.size(), module.stride, module.padding)
                weight = weight + self.multiplier * conved * self.scale

            # set weight to org_module
            org_sd["weight"] = weight.to(dtype)
            self.org_module.load_state_dict(org_sd)
        else:
            # split_dims
            total_dims = sum(self.split_dims)
            for i in range(len(self.split_dims)):
                # get up/down weight
                down_weight = sd[f"lora_down.{i}.weight"].to(torch.float).to(device)  # (rank, in_dim)
                up_weight = sd[f"lora_up.{i}.weight"].to(torch.float).to(device)  # (split dim, rank)

                # pad up_weight -> (total_dims, rank)
                padded_up_weight = torch.zeros((total_dims, up_weight.size(0)), device=device, dtype=torch.float)
                padded_up_weight[sum(self.split_dims[:i]) : sum(self.split_dims[: i + 1])] = up_weight

                # merge weight
                weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale

            # set weight to org_module
            org_sd["weight"] = weight.to(dtype)
            self.org_module.load_state_dict(org_sd)

    # 復元できるマージのため、このモジュールのweightを返す
    def get_weight(self, multiplier=None):
        if multiplier is None:
            multiplier = self.multiplier

        # get up/down weight from module
        up_weight = self.lora_up.weight.to(torch.float)
        down_weight = self.lora_down.weight.to(torch.float)

        # pre-calculated weight
        if len(down_weight.size()) == 2:
            # linear
            weight = self.multiplier * (up_weight @ down_weight) * self.scale
        elif down_weight.size()[2:4] == (1, 1):
            # conv2d 1x1
            weight = (
                self.multiplier
                * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
                * self.scale
            )
        else:
            # conv2d 3x3
            conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
            weight = self.multiplier * conved * self.scale

        return weight

    def set_region(self, region):
        self.region = region
        self.region_mask = None

    def default_forward(self, x):
        # logger.info(f"default_forward {self.lora_name} {x.size()}")
        if self.split_dims is None:
            lx = self.lora_down(x)
            lx = self.lora_up(lx)
            return self.org_forward(x) + lx * self.multiplier * self.scale
        else:
            lxs = [lora_down(x) for lora_down in self.lora_down]
            lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]
            return self.org_forward(x) + torch.cat(lxs, dim=-1) * self.multiplier * self.scale

    def forward(self, x):
        if not self.enabled:
            return self.org_forward(x)
        return self.default_forward(x)


def create_network(
    multiplier: float,
    network_dim: Optional[int],
    network_alpha: Optional[float],
    ae: AutoencoderKL,
    text_encoders: List[CLIPTextModel],
    flux,
    neuron_dropout: Optional[float] = None,
    **kwargs,
):
    if network_dim is None:
        network_dim = 4  # default
    if network_alpha is None:
        network_alpha = 1.0

    # extract dim/alpha for conv2d, and block dim
    conv_dim = kwargs.get("conv_dim", None)
    conv_alpha = kwargs.get("conv_alpha", None)
    if conv_dim is not None:
        conv_dim = int(conv_dim)
        if conv_alpha is None:
            conv_alpha = 1.0
        else:
            conv_alpha = float(conv_alpha)

    # attn dim, mlp dim: only for DoubleStreamBlock. SingleStreamBlock is not supported because of combined qkv
    img_attn_dim = kwargs.get("img_attn_dim", None)
    txt_attn_dim = kwargs.get("txt_attn_dim", None)
    img_mlp_dim = kwargs.get("img_mlp_dim", None)
    txt_mlp_dim = kwargs.get("txt_mlp_dim", None)
    img_mod_dim = kwargs.get("img_mod_dim", None)
    txt_mod_dim = kwargs.get("txt_mod_dim", None)
    single_dim = kwargs.get("single_dim", None)  # SingleStreamBlock
    single_mod_dim = kwargs.get("single_mod_dim", None)  # SingleStreamBlock
    if img_attn_dim is not None:
        img_attn_dim = int(img_attn_dim)
    if txt_attn_dim is not None:
        txt_attn_dim = int(txt_attn_dim)
    if img_mlp_dim is not None:
        img_mlp_dim = int(img_mlp_dim)
    if txt_mlp_dim is not None:
        txt_mlp_dim = int(txt_mlp_dim)
    if img_mod_dim is not None:
        img_mod_dim = int(img_mod_dim)
    if txt_mod_dim is not None:
        txt_mod_dim = int(txt_mod_dim)
    if single_dim is not None:
        single_dim = int(single_dim)
    if single_mod_dim is not None:
        single_mod_dim = int(single_mod_dim)
    type_dims = [img_attn_dim, txt_attn_dim, img_mlp_dim, txt_mlp_dim, img_mod_dim, txt_mod_dim, single_dim, single_mod_dim]
    if all([d is None for d in type_dims]):
        type_dims = None

    # in_dims [img, time, vector, guidance, txt]
    in_dims = kwargs.get("in_dims", None)
    if in_dims is not None:
        in_dims = in_dims.strip()
        if in_dims.startswith("[") and in_dims.endswith("]"):
            in_dims = in_dims[1:-1]
        in_dims = [int(d) for d in in_dims.split(",")]  # is it better to use ast.literal_eval?
        assert len(in_dims) == 5, f"invalid in_dims: {in_dims}, must be 5 dimensions (img, time, vector, guidance, txt)"

    # double/single train blocks
    def parse_block_selection(selection: str, total_blocks: int) -> List[bool]:
        """
        Parse a block selection string and return a list of booleans.

        Args:
        selection (str): A string specifying which blocks to select.
        total_blocks (int): The total number of blocks available.

        Returns:
        List[bool]: A list of booleans indicating which blocks are selected.
        """
        if selection == "all":
            return [True] * total_blocks
        if selection == "none" or selection == "":
            return [False] * total_blocks

        selected = [False] * total_blocks
        ranges = selection.split(",")

        for r in ranges:
            if "-" in r:
                start, end = map(str.strip, r.split("-"))
                start = int(start)
                end = int(end)
                assert 0 <= start < total_blocks, f"invalid start index: {start}"
                assert 0 <= end < total_blocks, f"invalid end index: {end}"
                assert start <= end, f"invalid range: {start}-{end}"
                for i in range(start, end + 1):
                    selected[i] = True
            else:
                index = int(r)
                assert 0 <= index < total_blocks, f"invalid index: {index}"
                selected[index] = True

        return selected

    train_double_block_indices = kwargs.get("train_double_block_indices", None)
    train_single_block_indices = kwargs.get("train_single_block_indices", None)
    if train_double_block_indices is not None:
        train_double_block_indices = parse_block_selection(train_double_block_indices, NUM_DOUBLE_BLOCKS)
    if train_single_block_indices is not None:
        train_single_block_indices = parse_block_selection(train_single_block_indices, NUM_SINGLE_BLOCKS)

    # rank/module dropout
    rank_dropout = kwargs.get("rank_dropout", None)
    if rank_dropout is not None:
        rank_dropout = float(rank_dropout)
    module_dropout = kwargs.get("module_dropout", None)
    if module_dropout is not None:
        module_dropout = float(module_dropout)

    # single or double blocks
    train_blocks = kwargs.get("train_blocks", None)  # None (default), "all" (same as None), "single", "double"
    if train_blocks is not None:
        assert train_blocks in ["all", "single", "double"], f"invalid train_blocks: {train_blocks}"

    # split qkv
    split_qkv = kwargs.get("split_qkv", False)
    if split_qkv is not None:
        split_qkv = True if split_qkv == "True" else False

    # train T5XXL
    train_t5xxl = kwargs.get("train_t5xxl", False)
    if train_t5xxl is not None:
        train_t5xxl = True if train_t5xxl == "True" else False

    # verbose
    verbose = kwargs.get("verbose", False)
    if verbose is not None:
        verbose = True if verbose == "True" else False

    # すごく引数が多いな ( ^ω^)・・・
    network = LoRANetwork(
        text_encoders,
        flux,
        multiplier=multiplier,
        lora_dim=network_dim,
        alpha=network_alpha,
        dropout=neuron_dropout,
        rank_dropout=rank_dropout,
        module_dropout=module_dropout,
        conv_lora_dim=conv_dim,
        conv_alpha=conv_alpha,
        train_blocks=train_blocks,
        split_qkv=split_qkv,
        train_t5xxl=train_t5xxl,
        type_dims=type_dims,
        in_dims=in_dims,
        train_double_block_indices=train_double_block_indices,
        train_single_block_indices=train_single_block_indices,
        verbose=verbose,
    )

    loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None)
    loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None)
    loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None)
    loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None
    loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None
    loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None
    if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None:
        network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio)

    return network


# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, ae, text_encoders, flux, weights_sd=None, for_inference=False, **kwargs):
    # if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True
    if weights_sd is None:
        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import load_file, safe_open

            weights_sd = load_file(file)
        else:
            weights_sd = torch.load(file, map_location="cpu")

    # get dim/alpha mapping, and train t5xxl
    modules_dim = {}
    modules_alpha = {}
    train_t5xxl = None
    for key, value in weights_sd.items():
        if "." not in key:
            continue

        lora_name = key.split(".")[0]
        if "alpha" in key:
            modules_alpha[lora_name] = value
        elif "lora_down" in key:
            dim = value.size()[0]
            modules_dim[lora_name] = dim
            # logger.info(lora_name, value.size(), dim)

        if train_t5xxl is None or train_t5xxl is False:
            train_t5xxl = "lora_te3" in lora_name

    if train_t5xxl is None:
        train_t5xxl = False

    # # split qkv
    # double_qkv_rank = None
    # single_qkv_rank = None
    # rank = None
    # for lora_name, dim in modules_dim.items():
    #     if "double" in lora_name and "qkv" in lora_name:
    #         double_qkv_rank = dim
    #     elif "single" in lora_name and "linear1" in lora_name:
    #         single_qkv_rank = dim
    #     elif rank is None:
    #         rank = dim
    #     if double_qkv_rank is not None and single_qkv_rank is not None and rank is not None:
    #         break
    # split_qkv = (double_qkv_rank is not None and double_qkv_rank != rank) or (
    #     single_qkv_rank is not None and single_qkv_rank != rank
    # )
    split_qkv = False  # split_qkv is not needed to care, because state_dict is qkv combined

    module_class = LoRAInfModule if for_inference else LoRAModule

    network = LoRANetwork(
        text_encoders,
        flux,
        multiplier=multiplier,
        modules_dim=modules_dim,
        modules_alpha=modules_alpha,
        module_class=module_class,
        split_qkv=split_qkv,
        train_t5xxl=train_t5xxl,
    )
    return network, weights_sd


class LoRANetwork(torch.nn.Module):
    # FLUX_TARGET_REPLACE_MODULE = ["DoubleStreamBlock", "SingleStreamBlock"]
    FLUX_TARGET_REPLACE_MODULE_DOUBLE = ["DoubleStreamBlock"]
    FLUX_TARGET_REPLACE_MODULE_SINGLE = ["SingleStreamBlock"]
    TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPSdpaAttention", "CLIPMLP", "T5Attention", "T5DenseGatedActDense"]
    LORA_PREFIX_FLUX = "lora_unet"  # make ComfyUI compatible
    LORA_PREFIX_TEXT_ENCODER_CLIP = "lora_te1"
    LORA_PREFIX_TEXT_ENCODER_T5 = "lora_te3"  # make ComfyUI compatible

    def __init__(
        self,
        text_encoders: Union[List[CLIPTextModel], CLIPTextModel],
        unet,
        multiplier: float = 1.0,
        lora_dim: int = 4,
        alpha: float = 1,
        dropout: Optional[float] = None,
        rank_dropout: Optional[float] = None,
        module_dropout: Optional[float] = None,
        conv_lora_dim: Optional[int] = None,
        conv_alpha: Optional[float] = None,
        module_class: Type[object] = LoRAModule,
        modules_dim: Optional[Dict[str, int]] = None,
        modules_alpha: Optional[Dict[str, int]] = None,
        train_blocks: Optional[str] = None,
        split_qkv: bool = False,
        train_t5xxl: bool = False,
        type_dims: Optional[List[int]] = None,
        in_dims: Optional[List[int]] = None,
        train_double_block_indices: Optional[List[bool]] = None,
        train_single_block_indices: Optional[List[bool]] = None,
        verbose: Optional[bool] = False,
    ) -> None:
        super().__init__()
        self.multiplier = multiplier

        self.lora_dim = lora_dim
        self.alpha = alpha
        self.conv_lora_dim = conv_lora_dim
        self.conv_alpha = conv_alpha
        self.dropout = dropout
        self.rank_dropout = rank_dropout
        self.module_dropout = module_dropout
        self.train_blocks = train_blocks if train_blocks is not None else "all"
        self.split_qkv = split_qkv
        self.train_t5xxl = train_t5xxl

        self.type_dims = type_dims
        self.in_dims = in_dims
        self.train_double_block_indices = train_double_block_indices
        self.train_single_block_indices = train_single_block_indices

        self.loraplus_lr_ratio = None
        self.loraplus_unet_lr_ratio = None
        self.loraplus_text_encoder_lr_ratio = None

        if modules_dim is not None:
            logger.info(f"create LoRA network from weights")
            self.in_dims = [0] * 5  # create in_dims
            # verbose = True
        else:
            logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
            logger.info(
                f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}"
            )
            # if self.conv_lora_dim is not None:
            #     logger.info(
            #         f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}"
            #     )
        if self.split_qkv:
            logger.info(f"split qkv for LoRA")
        if self.train_blocks is not None:
            logger.info(f"train {self.train_blocks} blocks only")
        if train_t5xxl:
            logger.info(f"train T5XXL as well")

        # create module instances
        def create_modules(
            is_flux: bool,
            text_encoder_idx: Optional[int],
            root_module: torch.nn.Module,
            target_replace_modules: List[str],
            filter: Optional[str] = None,
            default_dim: Optional[int] = None,
        ) -> List[LoRAModule]:
            prefix = (
                self.LORA_PREFIX_FLUX
                if is_flux
                else (self.LORA_PREFIX_TEXT_ENCODER_CLIP if text_encoder_idx == 0 else self.LORA_PREFIX_TEXT_ENCODER_T5)
            )

            loras = []
            skipped = []
            for name, module in root_module.named_modules():
                if target_replace_modules is None or module.__class__.__name__ in target_replace_modules:
                    if target_replace_modules is None:  # dirty hack for all modules
                        module = root_module  # search all modules

                    for child_name, child_module in module.named_modules():
                        is_linear = child_module.__class__.__name__ == "Linear"
                        is_conv2d = child_module.__class__.__name__ == "Conv2d"
                        is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)

                        if is_linear or is_conv2d:
                            lora_name = prefix + "." + (name + "." if name else "") + child_name
                            lora_name = lora_name.replace(".", "_")

                            if filter is not None and not filter in lora_name:
                                continue

                            dim = None
                            alpha = None

                            if modules_dim is not None:
                                # モジュール指定あり
                                if lora_name in modules_dim:
                                    dim = modules_dim[lora_name]
                                    alpha = modules_alpha[lora_name]
                            else:
                                # 通常、すべて対象とする
                                if is_linear or is_conv2d_1x1:
                                    dim = default_dim if default_dim is not None else self.lora_dim
                                    alpha = self.alpha

                                    if is_flux and type_dims is not None:
                                        identifier = [
                                            ("img_attn",),
                                            ("txt_attn",),
                                            ("img_mlp",),
                                            ("txt_mlp",),
                                            ("img_mod",),
                                            ("txt_mod",),
                                            ("single_blocks", "linear"),
                                            ("modulation",),
                                        ]
                                        for i, d in enumerate(type_dims):
                                            if d is not None and all([id in lora_name for id in identifier[i]]):
                                                dim = d  # may be 0 for skip
                                                break

                                    if (
                                        is_flux
                                        and dim
                                        and (
                                            self.train_double_block_indices is not None
                                            or self.train_single_block_indices is not None
                                        )
                                        and ("double" in lora_name or "single" in lora_name)
                                    ):
                                        # "lora_unet_double_blocks_0_..." or "lora_unet_single_blocks_0_..."
                                        block_index = int(lora_name.split("_")[4])  # bit dirty
                                        if (
                                            "double" in lora_name
                                            and self.train_double_block_indices is not None
                                            and not self.train_double_block_indices[block_index]
                                        ):
                                            dim = 0
                                        elif (
                                            "single" in lora_name
                                            and self.train_single_block_indices is not None
                                            and not self.train_single_block_indices[block_index]
                                        ):
                                            dim = 0

                                elif self.conv_lora_dim is not None:
                                    dim = self.conv_lora_dim
                                    alpha = self.conv_alpha

                            if dim is None or dim == 0:
                                # skipした情報を出力
                                if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None):
                                    skipped.append(lora_name)
                                continue

                            # qkv split
                            split_dims = None
                            if is_flux and split_qkv:
                                if "double" in lora_name and "qkv" in lora_name:
                                    split_dims = [3072] * 3
                                elif "single" in lora_name and "linear1" in lora_name:
                                    split_dims = [3072] * 3 + [12288]

                            lora = module_class(
                                lora_name,
                                child_module,
                                self.multiplier,
                                dim,
                                alpha,
                                dropout=dropout,
                                rank_dropout=rank_dropout,
                                module_dropout=module_dropout,
                                split_dims=split_dims,
                            )
                            loras.append(lora)

                if target_replace_modules is None:
                    break  # all modules are searched
            return loras, skipped

        # create LoRA for text encoder
        # 毎回すべてのモジュールを作るのは無駄なので要検討
        self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = []
        skipped_te = []
        for i, text_encoder in enumerate(text_encoders):
            index = i
            if not train_t5xxl and index > 0:  # 0: CLIP, 1: T5XXL, so we skip T5XXL if train_t5xxl is False
                break

            logger.info(f"create LoRA for Text Encoder {index+1}:")

            text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
            logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.")
            self.text_encoder_loras.extend(text_encoder_loras)
            skipped_te += skipped

        # create LoRA for U-Net
        if self.train_blocks == "all":
            target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE + LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE
        elif self.train_blocks == "single":
            target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE
        elif self.train_blocks == "double":
            target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE

        self.unet_loras: List[Union[LoRAModule, LoRAInfModule]]
        self.unet_loras, skipped_un = create_modules(True, None, unet, target_replace_modules)

        # img, time, vector, guidance, txt
        if self.in_dims:
            for filter, in_dim in zip(["_img_in", "_time_in", "_vector_in", "_guidance_in", "_txt_in"], self.in_dims):
                loras, _ = create_modules(True, None, unet, None, filter=filter, default_dim=in_dim)
                self.unet_loras.extend(loras)

        logger.info(f"create LoRA for FLUX {self.train_blocks} blocks: {len(self.unet_loras)} modules.")
        if verbose:
            for lora in self.unet_loras:
                logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}")

        skipped = skipped_te + skipped_un
        if verbose and len(skipped) > 0:
            logger.warning(
                f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
            )
            for name in skipped:
                logger.info(f"\t{name}")

        # assertion
        names = set()
        for lora in self.text_encoder_loras + self.unet_loras:
            assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
            names.add(lora.lora_name)

    def set_multiplier(self, multiplier):
        self.multiplier = multiplier
        for lora in self.text_encoder_loras + self.unet_loras:
            lora.multiplier = self.multiplier

    def set_enabled(self, is_enabled):
        for lora in self.text_encoder_loras + self.unet_loras:
            lora.enabled = is_enabled

    def load_weights(self, file):
        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import load_file

            weights_sd = load_file(file)
        else:
            weights_sd = torch.load(file, map_location="cpu")

        info = self.load_state_dict(weights_sd, False)
        return info

    def load_state_dict(self, state_dict, strict=True):
        # override to convert original weight to split qkv
        if not self.split_qkv:
            return super().load_state_dict(state_dict, strict)

        # split qkv
        for key in list(state_dict.keys()):
            if "double" in key and "qkv" in key:
                split_dims = [3072] * 3
            elif "single" in key and "linear1" in key:
                split_dims = [3072] * 3 + [12288]
            else:
                continue

            weight = state_dict[key]
            lora_name = key.split(".")[0]
            if "lora_down" in key and "weight" in key:
                # dense weight (rank*3, in_dim)
                split_weight = torch.chunk(weight, len(split_dims), dim=0)
                for i, split_w in enumerate(split_weight):
                    state_dict[f"{lora_name}.lora_down.{i}.weight"] = split_w

                del state_dict[key]
                # print(f"split {key}: {weight.shape} to {[w.shape for w in split_weight]}")
            elif "lora_up" in key and "weight" in key:
                # sparse weight (out_dim=sum(split_dims), rank*3)
                rank = weight.size(1) // len(split_dims)
                i = 0
                for j in range(len(split_dims)):
                    state_dict[f"{lora_name}.lora_up.{j}.weight"] = weight[i : i + split_dims[j], j * rank : (j + 1) * rank]
                    i += split_dims[j]
                del state_dict[key]

                # # check is sparse
                # i = 0
                # is_zero = True
                # for j in range(len(split_dims)):
                #     for k in range(len(split_dims)):
                #         if j == k:
                #             continue
                #         is_zero = is_zero and torch.all(weight[i : i + split_dims[j], k * rank : (k + 1) * rank] == 0)
                #     i += split_dims[j]
                # if not is_zero:
                #     logger.warning(f"weight is not sparse: {key}")
                # else:
                #     logger.info(f"weight is sparse: {key}")

                # print(
                #     f"split {key}: {weight.shape} to {[state_dict[k].shape for k in [f'{lora_name}.lora_up.{j}.weight' for j in range(len(split_dims))]]}"
                # )

            # alpha is unchanged

        return super().load_state_dict(state_dict, strict)

    def state_dict(self, destination=None, prefix="", keep_vars=False):
        if not self.split_qkv:
            return super().state_dict(destination, prefix, keep_vars)

        # merge qkv
        state_dict = super().state_dict(destination, prefix, keep_vars)
        new_state_dict = {}
        for key in list(state_dict.keys()):
            if "double" in key and "qkv" in key:
                split_dims = [3072] * 3
            elif "single" in key and "linear1" in key:
                split_dims = [3072] * 3 + [12288]
            else:
                new_state_dict[key] = state_dict[key]
                continue

            if key not in state_dict:
                continue  # already merged

            lora_name = key.split(".")[0]

            # (rank, in_dim) * 3
            down_weights = [state_dict.pop(f"{lora_name}.lora_down.{i}.weight") for i in range(len(split_dims))]
            # (split dim, rank) * 3
            up_weights = [state_dict.pop(f"{lora_name}.lora_up.{i}.weight") for i in range(len(split_dims))]

            alpha = state_dict.pop(f"{lora_name}.alpha")

            # merge down weight
            down_weight = torch.cat(down_weights, dim=0)  # (rank, split_dim) * 3 -> (rank*3, sum of split_dim)

            # merge up weight (sum of split_dim, rank*3)
            rank = up_weights[0].size(1)
            up_weight = torch.zeros((sum(split_dims), down_weight.size(0)), device=down_weight.device, dtype=down_weight.dtype)
            i = 0
            for j in range(len(split_dims)):
                up_weight[i : i + split_dims[j], j * rank : (j + 1) * rank] = up_weights[j]
                i += split_dims[j]

            new_state_dict[f"{lora_name}.lora_down.weight"] = down_weight
            new_state_dict[f"{lora_name}.lora_up.weight"] = up_weight
            new_state_dict[f"{lora_name}.alpha"] = alpha

            # print(
            #     f"merged {lora_name}: {lora_name}, {[w.shape for w in down_weights]}, {[w.shape for w in up_weights]} to {down_weight.shape}, {up_weight.shape}"
            # )
            print(f"new key: {lora_name}.lora_down.weight, {lora_name}.lora_up.weight, {lora_name}.alpha")

        return new_state_dict

    def apply_to(self, text_encoders, flux, apply_text_encoder=True, apply_unet=True):
        if apply_text_encoder:
            logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules")
        else:
            self.text_encoder_loras = []

        if apply_unet:
            logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules")
        else:
            self.unet_loras = []

        for lora in self.text_encoder_loras + self.unet_loras:
            lora.apply_to()
            self.add_module(lora.lora_name, lora)

    # マージできるかどうかを返す
    def is_mergeable(self):
        return True

    # TODO refactor to common function with apply_to
    def merge_to(self, text_encoders, flux, weights_sd, dtype=None, device=None):
        apply_text_encoder = apply_unet = False
        for key in weights_sd.keys():
            if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP) or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5):
                apply_text_encoder = True
            elif key.startswith(LoRANetwork.LORA_PREFIX_FLUX):
                apply_unet = True

        if apply_text_encoder:
            logger.info("enable LoRA for text encoder")
        else:
            self.text_encoder_loras = []

        if apply_unet:
            logger.info("enable LoRA for U-Net")
        else:
            self.unet_loras = []

        for lora in self.text_encoder_loras + self.unet_loras:
            sd_for_lora = {}
            for key in weights_sd.keys():
                if key.startswith(lora.lora_name):
                    sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
            lora.merge_to(sd_for_lora, dtype, device)

        logger.info(f"weights are merged")

    def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio):
        self.loraplus_lr_ratio = loraplus_lr_ratio
        self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio
        self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio

        logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}")
        logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}")

    def prepare_optimizer_params_with_multiple_te_lrs(self, text_encoder_lr, unet_lr, default_lr):
        # make sure text_encoder_lr as list of two elements
        # if float, use the same value for both text encoders
        if text_encoder_lr is None or (isinstance(text_encoder_lr, list) and len(text_encoder_lr) == 0):
            text_encoder_lr = [default_lr, default_lr]
        elif isinstance(text_encoder_lr, float) or isinstance(text_encoder_lr, int):
            text_encoder_lr = [float(text_encoder_lr), float(text_encoder_lr)]
        elif len(text_encoder_lr) == 1:
            text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[0]]

        self.requires_grad_(True)

        all_params = []
        lr_descriptions = []

        def assemble_params(loras, lr, loraplus_ratio):
            param_groups = {"lora": {}, "plus": {}}
            for lora in loras:
                for name, param in lora.named_parameters():
                    if loraplus_ratio is not None and "lora_up" in name:
                        param_groups["plus"][f"{lora.lora_name}.{name}"] = param
                    else:
                        param_groups["lora"][f"{lora.lora_name}.{name}"] = param

            params = []
            descriptions = []
            for key in param_groups.keys():
                param_data = {"params": param_groups[key].values()}

                if len(param_data["params"]) == 0:
                    continue

                if lr is not None:
                    if key == "plus":
                        param_data["lr"] = lr * loraplus_ratio
                    else:
                        param_data["lr"] = lr

                if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None:
                    logger.info("NO LR skipping!")
                    continue

                params.append(param_data)
                descriptions.append("plus" if key == "plus" else "")

            return params, descriptions

        if self.text_encoder_loras:
            loraplus_lr_ratio = self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio

            # split text encoder loras for te1 and te3
            te1_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP)]
            te3_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_T5)]
            if len(te1_loras) > 0:
                logger.info(f"Text Encoder 1 (CLIP-L): {len(te1_loras)} modules, LR {text_encoder_lr[0]}")
                params, descriptions = assemble_params(te1_loras, text_encoder_lr[0], loraplus_lr_ratio)
                all_params.extend(params)
                lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions])
            if len(te3_loras) > 0:
                logger.info(f"Text Encoder 2 (T5XXL): {len(te3_loras)} modules, LR {text_encoder_lr[1]}")
                params, descriptions = assemble_params(te3_loras, text_encoder_lr[1], loraplus_lr_ratio)
                all_params.extend(params)
                lr_descriptions.extend(["textencoder 2 " + (" " + d if d else "") for d in descriptions])

        if self.unet_loras:
            params, descriptions = assemble_params(
                self.unet_loras,
                unet_lr if unet_lr is not None else default_lr,
                self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio,
            )
            all_params.extend(params)
            lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions])

        return all_params, lr_descriptions

    def enable_gradient_checkpointing(self):
        # not supported
        pass

    def prepare_grad_etc(self, text_encoder, unet):
        self.requires_grad_(True)

    def on_epoch_start(self, text_encoder, unet):
        self.train()

    def get_trainable_params(self):
        return self.parameters()

    def save_weights(self, file, dtype, metadata):
        if metadata is not None and len(metadata) == 0:
            metadata = None

        state_dict = self.state_dict()

        if dtype is not None:
            for key in list(state_dict.keys()):
                v = state_dict[key]
                v = v.detach().clone().to("cpu").to(dtype)
                state_dict[key] = v

        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import save_file
            from library import train_util

            # Precalculate model hashes to save time on indexing
            if metadata is None:
                metadata = {}
            model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
            metadata["sshs_model_hash"] = model_hash
            metadata["sshs_legacy_hash"] = legacy_hash

            save_file(state_dict, file, metadata)
        else:
            torch.save(state_dict, file)

    def backup_weights(self):
        # 重みのバックアップを行う
        loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
        for lora in loras:
            org_module = lora.org_module_ref[0]
            if not hasattr(org_module, "_lora_org_weight"):
                sd = org_module.state_dict()
                org_module._lora_org_weight = sd["weight"].detach().clone()
                org_module._lora_restored = True

    def restore_weights(self):
        # 重みのリストアを行う
        loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
        for lora in loras:
            org_module = lora.org_module_ref[0]
            if not org_module._lora_restored:
                sd = org_module.state_dict()
                sd["weight"] = org_module._lora_org_weight
                org_module.load_state_dict(sd)
                org_module._lora_restored = True

    def pre_calculation(self):
        # 事前計算を行う
        loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
        for lora in loras:
            org_module = lora.org_module_ref[0]
            sd = org_module.state_dict()

            org_weight = sd["weight"]
            lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
            sd["weight"] = org_weight + lora_weight
            assert sd["weight"].shape == org_weight.shape
            org_module.load_state_dict(sd)

            org_module._lora_restored = False
            lora.enabled = False

    def apply_max_norm_regularization(self, max_norm_value, device):
        downkeys = []
        upkeys = []
        alphakeys = []
        norms = []
        keys_scaled = 0

        state_dict = self.state_dict()
        for key in state_dict.keys():
            if "lora_down" in key and "weight" in key:
                downkeys.append(key)
                upkeys.append(key.replace("lora_down", "lora_up"))
                alphakeys.append(key.replace("lora_down.weight", "alpha"))

        for i in range(len(downkeys)):
            down = state_dict[downkeys[i]].to(device)
            up = state_dict[upkeys[i]].to(device)
            alpha = state_dict[alphakeys[i]].to(device)
            dim = down.shape[0]
            scale = alpha / dim

            if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
                updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
            elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
                updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
            else:
                updown = up @ down

            updown *= scale

            norm = updown.norm().clamp(min=max_norm_value / 2)
            desired = torch.clamp(norm, max=max_norm_value)
            ratio = desired.cpu() / norm.cpu()
            sqrt_ratio = ratio**0.5
            if ratio != 1:
                keys_scaled += 1
                state_dict[upkeys[i]] *= sqrt_ratio
                state_dict[downkeys[i]] *= sqrt_ratio
            scalednorm = updown.norm() * ratio
            norms.append(scalednorm.item())

        return keys_scaled, sum(norms) / len(norms), max(norms)