Spaces:
Running
on
Zero
Running
on
Zero
File size: 48,908 Bytes
c1bc1cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 |
# temporary minimum implementation of LoRA
# FLUX doesn't have Conv2d, so we ignore it
# TODO commonize with the original implementation
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import math
import os
from typing import Dict, List, Optional, Tuple, Type, Union
from diffusers import AutoencoderKL
from transformers import CLIPTextModel
import numpy as np
import torch
import re
from library.utils import setup_logging
from library.sdxl_original_unet import SdxlUNet2DConditionModel
setup_logging()
import logging
logger = logging.getLogger(__name__)
NUM_DOUBLE_BLOCKS = 19
NUM_SINGLE_BLOCKS = 38
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
split_dims: Optional[List[int]] = None,
):
"""
if alpha == 0 or None, alpha is rank (no scaling).
split_dims is used to mimic the split qkv of FLUX as same as Diffusers
"""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_dim = lora_dim
self.split_dims = split_dims
if split_dims is None:
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
else:
# conv2d not supported
assert sum(split_dims) == out_dim, "sum of split_dims must be equal to out_dim"
assert org_module.__class__.__name__ == "Linear", "split_dims is only supported for Linear"
# print(f"split_dims: {split_dims}")
self.lora_down = torch.nn.ModuleList(
[torch.nn.Linear(in_dim, self.lora_dim, bias=False) for _ in range(len(split_dims))]
)
self.lora_up = torch.nn.ModuleList([torch.nn.Linear(self.lora_dim, split_dim, bias=False) for split_dim in split_dims])
for lora_down in self.lora_down:
torch.nn.init.kaiming_uniform_(lora_down.weight, a=math.sqrt(5))
for lora_up in self.lora_up:
torch.nn.init.zeros_(lora_up.weight)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
self.multiplier = multiplier
self.org_module = org_module # remove in applying
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
org_forwarded = self.org_forward(x)
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return org_forwarded
if self.split_dims is None:
lx = self.lora_down(x)
# normal dropout
if self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
return org_forwarded + lx * self.multiplier * scale
else:
lxs = [lora_down(x) for lora_down in self.lora_down]
# normal dropout
if self.dropout is not None and self.training:
lxs = [torch.nn.functional.dropout(lx, p=self.dropout) for lx in lxs]
# rank dropout
if self.rank_dropout is not None and self.training:
masks = [torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout for lx in lxs]
for i in range(len(lxs)):
if len(lx.size()) == 3:
masks[i] = masks[i].unsqueeze(1)
elif len(lx.size()) == 4:
masks[i] = masks[i].unsqueeze(-1).unsqueeze(-1)
lxs[i] = lxs[i] * masks[i]
# scaling for rank dropout: treat as if the rank is changed
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]
return org_forwarded + torch.cat(lxs, dim=-1) * self.multiplier * scale
class LoRAInfModule(LoRAModule):
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
**kwargs,
):
# no dropout for inference
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)
self.org_module_ref = [org_module] # 後から参照できるように
self.enabled = True
self.network: LoRANetwork = None
def set_network(self, network):
self.network = network
# freezeしてマージする
def merge_to(self, sd, dtype, device):
# extract weight from org_module
org_sd = self.org_module.state_dict()
weight = org_sd["weight"]
org_dtype = weight.dtype
org_device = weight.device
weight = weight.to(torch.float) # calc in float
if dtype is None:
dtype = org_dtype
if device is None:
device = org_device
if self.split_dims is None:
# get up/down weight
down_weight = sd["lora_down.weight"].to(torch.float).to(device)
up_weight = sd["lora_up.weight"].to(torch.float).to(device)
# merge weight
if len(weight.size()) == 2:
# linear
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# logger.info(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + self.multiplier * conved * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
else:
# split_dims
total_dims = sum(self.split_dims)
for i in range(len(self.split_dims)):
# get up/down weight
down_weight = sd[f"lora_down.{i}.weight"].to(torch.float).to(device) # (rank, in_dim)
up_weight = sd[f"lora_up.{i}.weight"].to(torch.float).to(device) # (split dim, rank)
# pad up_weight -> (total_dims, rank)
padded_up_weight = torch.zeros((total_dims, up_weight.size(0)), device=device, dtype=torch.float)
padded_up_weight[sum(self.split_dims[:i]) : sum(self.split_dims[: i + 1])] = up_weight
# merge weight
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
# 復元できるマージのため、このモジュールのweightを返す
def get_weight(self, multiplier=None):
if multiplier is None:
multiplier = self.multiplier
# get up/down weight from module
up_weight = self.lora_up.weight.to(torch.float)
down_weight = self.lora_down.weight.to(torch.float)
# pre-calculated weight
if len(down_weight.size()) == 2:
# linear
weight = self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = self.multiplier * conved * self.scale
return weight
def set_region(self, region):
self.region = region
self.region_mask = None
def default_forward(self, x):
# logger.info(f"default_forward {self.lora_name} {x.size()}")
if self.split_dims is None:
lx = self.lora_down(x)
lx = self.lora_up(lx)
return self.org_forward(x) + lx * self.multiplier * self.scale
else:
lxs = [lora_down(x) for lora_down in self.lora_down]
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]
return self.org_forward(x) + torch.cat(lxs, dim=-1) * self.multiplier * self.scale
def forward(self, x):
if not self.enabled:
return self.org_forward(x)
return self.default_forward(x)
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
ae: AutoencoderKL,
text_encoders: List[CLIPTextModel],
flux,
neuron_dropout: Optional[float] = None,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
# attn dim, mlp dim: only for DoubleStreamBlock. SingleStreamBlock is not supported because of combined qkv
img_attn_dim = kwargs.get("img_attn_dim", None)
txt_attn_dim = kwargs.get("txt_attn_dim", None)
img_mlp_dim = kwargs.get("img_mlp_dim", None)
txt_mlp_dim = kwargs.get("txt_mlp_dim", None)
img_mod_dim = kwargs.get("img_mod_dim", None)
txt_mod_dim = kwargs.get("txt_mod_dim", None)
single_dim = kwargs.get("single_dim", None) # SingleStreamBlock
single_mod_dim = kwargs.get("single_mod_dim", None) # SingleStreamBlock
if img_attn_dim is not None:
img_attn_dim = int(img_attn_dim)
if txt_attn_dim is not None:
txt_attn_dim = int(txt_attn_dim)
if img_mlp_dim is not None:
img_mlp_dim = int(img_mlp_dim)
if txt_mlp_dim is not None:
txt_mlp_dim = int(txt_mlp_dim)
if img_mod_dim is not None:
img_mod_dim = int(img_mod_dim)
if txt_mod_dim is not None:
txt_mod_dim = int(txt_mod_dim)
if single_dim is not None:
single_dim = int(single_dim)
if single_mod_dim is not None:
single_mod_dim = int(single_mod_dim)
type_dims = [img_attn_dim, txt_attn_dim, img_mlp_dim, txt_mlp_dim, img_mod_dim, txt_mod_dim, single_dim, single_mod_dim]
if all([d is None for d in type_dims]):
type_dims = None
# in_dims [img, time, vector, guidance, txt]
in_dims = kwargs.get("in_dims", None)
if in_dims is not None:
in_dims = in_dims.strip()
if in_dims.startswith("[") and in_dims.endswith("]"):
in_dims = in_dims[1:-1]
in_dims = [int(d) for d in in_dims.split(",")] # is it better to use ast.literal_eval?
assert len(in_dims) == 5, f"invalid in_dims: {in_dims}, must be 5 dimensions (img, time, vector, guidance, txt)"
# double/single train blocks
def parse_block_selection(selection: str, total_blocks: int) -> List[bool]:
"""
Parse a block selection string and return a list of booleans.
Args:
selection (str): A string specifying which blocks to select.
total_blocks (int): The total number of blocks available.
Returns:
List[bool]: A list of booleans indicating which blocks are selected.
"""
if selection == "all":
return [True] * total_blocks
if selection == "none" or selection == "":
return [False] * total_blocks
selected = [False] * total_blocks
ranges = selection.split(",")
for r in ranges:
if "-" in r:
start, end = map(str.strip, r.split("-"))
start = int(start)
end = int(end)
assert 0 <= start < total_blocks, f"invalid start index: {start}"
assert 0 <= end < total_blocks, f"invalid end index: {end}"
assert start <= end, f"invalid range: {start}-{end}"
for i in range(start, end + 1):
selected[i] = True
else:
index = int(r)
assert 0 <= index < total_blocks, f"invalid index: {index}"
selected[index] = True
return selected
train_double_block_indices = kwargs.get("train_double_block_indices", None)
train_single_block_indices = kwargs.get("train_single_block_indices", None)
if train_double_block_indices is not None:
train_double_block_indices = parse_block_selection(train_double_block_indices, NUM_DOUBLE_BLOCKS)
if train_single_block_indices is not None:
train_single_block_indices = parse_block_selection(train_single_block_indices, NUM_SINGLE_BLOCKS)
# rank/module dropout
rank_dropout = kwargs.get("rank_dropout", None)
if rank_dropout is not None:
rank_dropout = float(rank_dropout)
module_dropout = kwargs.get("module_dropout", None)
if module_dropout is not None:
module_dropout = float(module_dropout)
# single or double blocks
train_blocks = kwargs.get("train_blocks", None) # None (default), "all" (same as None), "single", "double"
if train_blocks is not None:
assert train_blocks in ["all", "single", "double"], f"invalid train_blocks: {train_blocks}"
# split qkv
split_qkv = kwargs.get("split_qkv", False)
if split_qkv is not None:
split_qkv = True if split_qkv == "True" else False
# train T5XXL
train_t5xxl = kwargs.get("train_t5xxl", False)
if train_t5xxl is not None:
train_t5xxl = True if train_t5xxl == "True" else False
# verbose
verbose = kwargs.get("verbose", False)
if verbose is not None:
verbose = True if verbose == "True" else False
# すごく引数が多いな ( ^ω^)・・・
network = LoRANetwork(
text_encoders,
flux,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
conv_lora_dim=conv_dim,
conv_alpha=conv_alpha,
train_blocks=train_blocks,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
type_dims=type_dims,
in_dims=in_dims,
train_double_block_indices=train_double_block_indices,
train_single_block_indices=train_single_block_indices,
verbose=verbose,
)
loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None)
loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None)
loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None)
loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None
loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None
loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None
if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None:
network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio)
return network
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, ae, text_encoders, flux, weights_sd=None, for_inference=False, **kwargs):
# if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping, and train t5xxl
modules_dim = {}
modules_alpha = {}
train_t5xxl = None
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# logger.info(lora_name, value.size(), dim)
if train_t5xxl is None or train_t5xxl is False:
train_t5xxl = "lora_te3" in lora_name
if train_t5xxl is None:
train_t5xxl = False
# # split qkv
# double_qkv_rank = None
# single_qkv_rank = None
# rank = None
# for lora_name, dim in modules_dim.items():
# if "double" in lora_name and "qkv" in lora_name:
# double_qkv_rank = dim
# elif "single" in lora_name and "linear1" in lora_name:
# single_qkv_rank = dim
# elif rank is None:
# rank = dim
# if double_qkv_rank is not None and single_qkv_rank is not None and rank is not None:
# break
# split_qkv = (double_qkv_rank is not None and double_qkv_rank != rank) or (
# single_qkv_rank is not None and single_qkv_rank != rank
# )
split_qkv = False # split_qkv is not needed to care, because state_dict is qkv combined
module_class = LoRAInfModule if for_inference else LoRAModule
network = LoRANetwork(
text_encoders,
flux,
multiplier=multiplier,
modules_dim=modules_dim,
modules_alpha=modules_alpha,
module_class=module_class,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
)
return network, weights_sd
class LoRANetwork(torch.nn.Module):
# FLUX_TARGET_REPLACE_MODULE = ["DoubleStreamBlock", "SingleStreamBlock"]
FLUX_TARGET_REPLACE_MODULE_DOUBLE = ["DoubleStreamBlock"]
FLUX_TARGET_REPLACE_MODULE_SINGLE = ["SingleStreamBlock"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPSdpaAttention", "CLIPMLP", "T5Attention", "T5DenseGatedActDense"]
LORA_PREFIX_FLUX = "lora_unet" # make ComfyUI compatible
LORA_PREFIX_TEXT_ENCODER_CLIP = "lora_te1"
LORA_PREFIX_TEXT_ENCODER_T5 = "lora_te3" # make ComfyUI compatible
def __init__(
self,
text_encoders: Union[List[CLIPTextModel], CLIPTextModel],
unet,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
module_class: Type[object] = LoRAModule,
modules_dim: Optional[Dict[str, int]] = None,
modules_alpha: Optional[Dict[str, int]] = None,
train_blocks: Optional[str] = None,
split_qkv: bool = False,
train_t5xxl: bool = False,
type_dims: Optional[List[int]] = None,
in_dims: Optional[List[int]] = None,
train_double_block_indices: Optional[List[bool]] = None,
train_single_block_indices: Optional[List[bool]] = None,
verbose: Optional[bool] = False,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.train_blocks = train_blocks if train_blocks is not None else "all"
self.split_qkv = split_qkv
self.train_t5xxl = train_t5xxl
self.type_dims = type_dims
self.in_dims = in_dims
self.train_double_block_indices = train_double_block_indices
self.train_single_block_indices = train_single_block_indices
self.loraplus_lr_ratio = None
self.loraplus_unet_lr_ratio = None
self.loraplus_text_encoder_lr_ratio = None
if modules_dim is not None:
logger.info(f"create LoRA network from weights")
self.in_dims = [0] * 5 # create in_dims
# verbose = True
else:
logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
logger.info(
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}"
)
# if self.conv_lora_dim is not None:
# logger.info(
# f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}"
# )
if self.split_qkv:
logger.info(f"split qkv for LoRA")
if self.train_blocks is not None:
logger.info(f"train {self.train_blocks} blocks only")
if train_t5xxl:
logger.info(f"train T5XXL as well")
# create module instances
def create_modules(
is_flux: bool,
text_encoder_idx: Optional[int],
root_module: torch.nn.Module,
target_replace_modules: List[str],
filter: Optional[str] = None,
default_dim: Optional[int] = None,
) -> List[LoRAModule]:
prefix = (
self.LORA_PREFIX_FLUX
if is_flux
else (self.LORA_PREFIX_TEXT_ENCODER_CLIP if text_encoder_idx == 0 else self.LORA_PREFIX_TEXT_ENCODER_T5)
)
loras = []
skipped = []
for name, module in root_module.named_modules():
if target_replace_modules is None or module.__class__.__name__ in target_replace_modules:
if target_replace_modules is None: # dirty hack for all modules
module = root_module # search all modules
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + (name + "." if name else "") + child_name
lora_name = lora_name.replace(".", "_")
if filter is not None and not filter in lora_name:
continue
dim = None
alpha = None
if modules_dim is not None:
# モジュール指定あり
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
else:
# 通常、すべて対象とする
if is_linear or is_conv2d_1x1:
dim = default_dim if default_dim is not None else self.lora_dim
alpha = self.alpha
if is_flux and type_dims is not None:
identifier = [
("img_attn",),
("txt_attn",),
("img_mlp",),
("txt_mlp",),
("img_mod",),
("txt_mod",),
("single_blocks", "linear"),
("modulation",),
]
for i, d in enumerate(type_dims):
if d is not None and all([id in lora_name for id in identifier[i]]):
dim = d # may be 0 for skip
break
if (
is_flux
and dim
and (
self.train_double_block_indices is not None
or self.train_single_block_indices is not None
)
and ("double" in lora_name or "single" in lora_name)
):
# "lora_unet_double_blocks_0_..." or "lora_unet_single_blocks_0_..."
block_index = int(lora_name.split("_")[4]) # bit dirty
if (
"double" in lora_name
and self.train_double_block_indices is not None
and not self.train_double_block_indices[block_index]
):
dim = 0
elif (
"single" in lora_name
and self.train_single_block_indices is not None
and not self.train_single_block_indices[block_index]
):
dim = 0
elif self.conv_lora_dim is not None:
dim = self.conv_lora_dim
alpha = self.conv_alpha
if dim is None or dim == 0:
# skipした情報を出力
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None):
skipped.append(lora_name)
continue
# qkv split
split_dims = None
if is_flux and split_qkv:
if "double" in lora_name and "qkv" in lora_name:
split_dims = [3072] * 3
elif "single" in lora_name and "linear1" in lora_name:
split_dims = [3072] * 3 + [12288]
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
split_dims=split_dims,
)
loras.append(lora)
if target_replace_modules is None:
break # all modules are searched
return loras, skipped
# create LoRA for text encoder
# 毎回すべてのモジュールを作るのは無駄なので要検討
self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = []
skipped_te = []
for i, text_encoder in enumerate(text_encoders):
index = i
if not train_t5xxl and index > 0: # 0: CLIP, 1: T5XXL, so we skip T5XXL if train_t5xxl is False
break
logger.info(f"create LoRA for Text Encoder {index+1}:")
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.")
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
# create LoRA for U-Net
if self.train_blocks == "all":
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE + LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE
elif self.train_blocks == "single":
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE
elif self.train_blocks == "double":
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE
self.unet_loras: List[Union[LoRAModule, LoRAInfModule]]
self.unet_loras, skipped_un = create_modules(True, None, unet, target_replace_modules)
# img, time, vector, guidance, txt
if self.in_dims:
for filter, in_dim in zip(["_img_in", "_time_in", "_vector_in", "_guidance_in", "_txt_in"], self.in_dims):
loras, _ = create_modules(True, None, unet, None, filter=filter, default_dim=in_dim)
self.unet_loras.extend(loras)
logger.info(f"create LoRA for FLUX {self.train_blocks} blocks: {len(self.unet_loras)} modules.")
if verbose:
for lora in self.unet_loras:
logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}")
skipped = skipped_te + skipped_un
if verbose and len(skipped) > 0:
logger.warning(
f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
)
for name in skipped:
logger.info(f"\t{name}")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def set_enabled(self, is_enabled):
for lora in self.text_encoder_loras + self.unet_loras:
lora.enabled = is_enabled
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def load_state_dict(self, state_dict, strict=True):
# override to convert original weight to split qkv
if not self.split_qkv:
return super().load_state_dict(state_dict, strict)
# split qkv
for key in list(state_dict.keys()):
if "double" in key and "qkv" in key:
split_dims = [3072] * 3
elif "single" in key and "linear1" in key:
split_dims = [3072] * 3 + [12288]
else:
continue
weight = state_dict[key]
lora_name = key.split(".")[0]
if "lora_down" in key and "weight" in key:
# dense weight (rank*3, in_dim)
split_weight = torch.chunk(weight, len(split_dims), dim=0)
for i, split_w in enumerate(split_weight):
state_dict[f"{lora_name}.lora_down.{i}.weight"] = split_w
del state_dict[key]
# print(f"split {key}: {weight.shape} to {[w.shape for w in split_weight]}")
elif "lora_up" in key and "weight" in key:
# sparse weight (out_dim=sum(split_dims), rank*3)
rank = weight.size(1) // len(split_dims)
i = 0
for j in range(len(split_dims)):
state_dict[f"{lora_name}.lora_up.{j}.weight"] = weight[i : i + split_dims[j], j * rank : (j + 1) * rank]
i += split_dims[j]
del state_dict[key]
# # check is sparse
# i = 0
# is_zero = True
# for j in range(len(split_dims)):
# for k in range(len(split_dims)):
# if j == k:
# continue
# is_zero = is_zero and torch.all(weight[i : i + split_dims[j], k * rank : (k + 1) * rank] == 0)
# i += split_dims[j]
# if not is_zero:
# logger.warning(f"weight is not sparse: {key}")
# else:
# logger.info(f"weight is sparse: {key}")
# print(
# f"split {key}: {weight.shape} to {[state_dict[k].shape for k in [f'{lora_name}.lora_up.{j}.weight' for j in range(len(split_dims))]]}"
# )
# alpha is unchanged
return super().load_state_dict(state_dict, strict)
def state_dict(self, destination=None, prefix="", keep_vars=False):
if not self.split_qkv:
return super().state_dict(destination, prefix, keep_vars)
# merge qkv
state_dict = super().state_dict(destination, prefix, keep_vars)
new_state_dict = {}
for key in list(state_dict.keys()):
if "double" in key and "qkv" in key:
split_dims = [3072] * 3
elif "single" in key and "linear1" in key:
split_dims = [3072] * 3 + [12288]
else:
new_state_dict[key] = state_dict[key]
continue
if key not in state_dict:
continue # already merged
lora_name = key.split(".")[0]
# (rank, in_dim) * 3
down_weights = [state_dict.pop(f"{lora_name}.lora_down.{i}.weight") for i in range(len(split_dims))]
# (split dim, rank) * 3
up_weights = [state_dict.pop(f"{lora_name}.lora_up.{i}.weight") for i in range(len(split_dims))]
alpha = state_dict.pop(f"{lora_name}.alpha")
# merge down weight
down_weight = torch.cat(down_weights, dim=0) # (rank, split_dim) * 3 -> (rank*3, sum of split_dim)
# merge up weight (sum of split_dim, rank*3)
rank = up_weights[0].size(1)
up_weight = torch.zeros((sum(split_dims), down_weight.size(0)), device=down_weight.device, dtype=down_weight.dtype)
i = 0
for j in range(len(split_dims)):
up_weight[i : i + split_dims[j], j * rank : (j + 1) * rank] = up_weights[j]
i += split_dims[j]
new_state_dict[f"{lora_name}.lora_down.weight"] = down_weight
new_state_dict[f"{lora_name}.lora_up.weight"] = up_weight
new_state_dict[f"{lora_name}.alpha"] = alpha
# print(
# f"merged {lora_name}: {lora_name}, {[w.shape for w in down_weights]}, {[w.shape for w in up_weights]} to {down_weight.shape}, {up_weight.shape}"
# )
print(f"new key: {lora_name}.lora_down.weight, {lora_name}.lora_up.weight, {lora_name}.alpha")
return new_state_dict
def apply_to(self, text_encoders, flux, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
# マージできるかどうかを返す
def is_mergeable(self):
return True
# TODO refactor to common function with apply_to
def merge_to(self, text_encoders, flux, weights_sd, dtype=None, device=None):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP) or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5):
apply_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_FLUX):
apply_unet = True
if apply_text_encoder:
logger.info("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
logger.info(f"weights are merged")
def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio):
self.loraplus_lr_ratio = loraplus_lr_ratio
self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio
self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}")
logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}")
def prepare_optimizer_params_with_multiple_te_lrs(self, text_encoder_lr, unet_lr, default_lr):
# make sure text_encoder_lr as list of two elements
# if float, use the same value for both text encoders
if text_encoder_lr is None or (isinstance(text_encoder_lr, list) and len(text_encoder_lr) == 0):
text_encoder_lr = [default_lr, default_lr]
elif isinstance(text_encoder_lr, float) or isinstance(text_encoder_lr, int):
text_encoder_lr = [float(text_encoder_lr), float(text_encoder_lr)]
elif len(text_encoder_lr) == 1:
text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[0]]
self.requires_grad_(True)
all_params = []
lr_descriptions = []
def assemble_params(loras, lr, loraplus_ratio):
param_groups = {"lora": {}, "plus": {}}
for lora in loras:
for name, param in lora.named_parameters():
if loraplus_ratio is not None and "lora_up" in name:
param_groups["plus"][f"{lora.lora_name}.{name}"] = param
else:
param_groups["lora"][f"{lora.lora_name}.{name}"] = param
params = []
descriptions = []
for key in param_groups.keys():
param_data = {"params": param_groups[key].values()}
if len(param_data["params"]) == 0:
continue
if lr is not None:
if key == "plus":
param_data["lr"] = lr * loraplus_ratio
else:
param_data["lr"] = lr
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None:
logger.info("NO LR skipping!")
continue
params.append(param_data)
descriptions.append("plus" if key == "plus" else "")
return params, descriptions
if self.text_encoder_loras:
loraplus_lr_ratio = self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio
# split text encoder loras for te1 and te3
te1_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP)]
te3_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_T5)]
if len(te1_loras) > 0:
logger.info(f"Text Encoder 1 (CLIP-L): {len(te1_loras)} modules, LR {text_encoder_lr[0]}")
params, descriptions = assemble_params(te1_loras, text_encoder_lr[0], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions])
if len(te3_loras) > 0:
logger.info(f"Text Encoder 2 (T5XXL): {len(te3_loras)} modules, LR {text_encoder_lr[1]}")
params, descriptions = assemble_params(te3_loras, text_encoder_lr[1], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 2 " + (" " + d if d else "") for d in descriptions])
if self.unet_loras:
params, descriptions = assemble_params(
self.unet_loras,
unet_lr if unet_lr is not None else default_lr,
self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio,
)
all_params.extend(params)
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions])
return all_params, lr_descriptions
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from library import train_util
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def backup_weights(self):
# 重みのバックアップを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not hasattr(org_module, "_lora_org_weight"):
sd = org_module.state_dict()
org_module._lora_org_weight = sd["weight"].detach().clone()
org_module._lora_restored = True
def restore_weights(self):
# 重みのリストアを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not org_module._lora_restored:
sd = org_module.state_dict()
sd["weight"] = org_module._lora_org_weight
org_module.load_state_dict(sd)
org_module._lora_restored = True
def pre_calculation(self):
# 事前計算を行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
sd = org_module.state_dict()
org_weight = sd["weight"]
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
sd["weight"] = org_weight + lora_weight
assert sd["weight"].shape == org_weight.shape
org_module.load_state_dict(sd)
org_module._lora_restored = False
lora.enabled = False
def apply_max_norm_regularization(self, max_norm_value, device):
downkeys = []
upkeys = []
alphakeys = []
norms = []
keys_scaled = 0
state_dict = self.state_dict()
for key in state_dict.keys():
if "lora_down" in key and "weight" in key:
downkeys.append(key)
upkeys.append(key.replace("lora_down", "lora_up"))
alphakeys.append(key.replace("lora_down.weight", "alpha"))
for i in range(len(downkeys)):
down = state_dict[downkeys[i]].to(device)
up = state_dict[upkeys[i]].to(device)
alpha = state_dict[alphakeys[i]].to(device)
dim = down.shape[0]
scale = alpha / dim
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown *= scale
norm = updown.norm().clamp(min=max_norm_value / 2)
desired = torch.clamp(norm, max=max_norm_value)
ratio = desired.cpu() / norm.cpu()
sqrt_ratio = ratio**0.5
if ratio != 1:
keys_scaled += 1
state_dict[upkeys[i]] *= sqrt_ratio
state_dict[downkeys[i]] *= sqrt_ratio
scalednorm = updown.norm() * ratio
norms.append(scalednorm.item())
return keys_scaled, sum(norms) / len(norms), max(norms)
|