Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,176 Bytes
c1bc1cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
# base class for platform strategies. this file defines the interface for strategies
import os
import re
from typing import Any, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
# TODO remove circular import by moving ImageInfo to a separate file
# from library.train_util import ImageInfo
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
class TokenizeStrategy:
_strategy = None # strategy instance: actual strategy class
_re_attention = re.compile(
r"""\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""",
re.X,
)
@classmethod
def set_strategy(cls, strategy):
if cls._strategy is not None:
raise RuntimeError(f"Internal error. {cls.__name__} strategy is already set")
cls._strategy = strategy
@classmethod
def get_strategy(cls) -> Optional["TokenizeStrategy"]:
return cls._strategy
def _load_tokenizer(
self, model_class: Any, model_id: str, subfolder: Optional[str] = None, tokenizer_cache_dir: Optional[str] = None
) -> Any:
tokenizer = None
if tokenizer_cache_dir:
local_tokenizer_path = os.path.join(tokenizer_cache_dir, model_id.replace("/", "_"))
if os.path.exists(local_tokenizer_path):
logger.info(f"load tokenizer from cache: {local_tokenizer_path}")
tokenizer = model_class.from_pretrained(local_tokenizer_path) # same for v1 and v2
if tokenizer is None:
tokenizer = model_class.from_pretrained(model_id, subfolder=subfolder)
if tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
logger.info(f"save Tokenizer to cache: {local_tokenizer_path}")
tokenizer.save_pretrained(local_tokenizer_path)
return tokenizer
def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]:
raise NotImplementedError
def tokenize_with_weights(self, text: Union[str, List[str]]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""
returns: [tokens1, tokens2, ...], [weights1, weights2, ...]
"""
raise NotImplementedError
def _get_weighted_input_ids(
self, tokenizer: CLIPTokenizer, text: str, max_length: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
max_length includes starting and ending tokens.
"""
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\( - literal character '('
\[ - literal character '['
\) - literal character ')'
\] - literal character ']'
\\ - literal character '\'
anything else - just text
>>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
>>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
>>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
>>> parse_prompt_attention('\(literal\]')
[['(literal]', 1.0]]
>>> parse_prompt_attention('(unnecessary)(parens)')
[['unnecessaryparens', 1.1]]
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
"""
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in TokenizeStrategy._re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith("\\"):
res.append([text[1:], 1.0])
elif text == "(":
round_brackets.append(len(res))
elif text == "[":
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ")" and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == "]" and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
res.append([text, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def get_prompts_with_weights(text: str, max_length: int):
r"""
Tokenize a list of prompts and return its tokens with weights of each token. max_length does not include starting and ending token.
No padding, starting or ending token is included.
"""
truncated = False
texts_and_weights = parse_prompt_attention(text)
tokens = []
weights = []
for word, weight in texts_and_weights:
# tokenize and discard the starting and the ending token
token = tokenizer(word).input_ids[1:-1]
tokens += token
# copy the weight by length of token
weights += [weight] * len(token)
# stop if the text is too long (longer than truncation limit)
if len(tokens) > max_length:
truncated = True
break
# truncate
if len(tokens) > max_length:
truncated = True
tokens = tokens[:max_length]
weights = weights[:max_length]
if truncated:
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
return tokens, weights
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad):
r"""
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
"""
tokens = [bos] + tokens + [eos] + [pad] * (max_length - 2 - len(tokens))
weights = [1.0] + weights + [1.0] * (max_length - 1 - len(weights))
return tokens, weights
if max_length is None:
max_length = tokenizer.model_max_length
tokens, weights = get_prompts_with_weights(text, max_length - 2)
tokens, weights = pad_tokens_and_weights(
tokens, weights, max_length, tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id
)
return torch.tensor(tokens).unsqueeze(0), torch.tensor(weights).unsqueeze(0)
def _get_input_ids(
self, tokenizer: CLIPTokenizer, text: str, max_length: Optional[int] = None, weighted: bool = False
) -> torch.Tensor:
"""
for SD1.5/2.0/SDXL
TODO support batch input
"""
if max_length is None:
max_length = tokenizer.model_max_length - 2
if weighted:
input_ids, weights = self._get_weighted_input_ids(tokenizer, text, max_length)
else:
input_ids = tokenizer(text, padding="max_length", truncation=True, max_length=max_length, return_tensors="pt").input_ids
if max_length > tokenizer.model_max_length:
input_ids = input_ids.squeeze(0)
iids_list = []
if tokenizer.pad_token_id == tokenizer.eos_token_id:
# v1
# 77以上の時は "<BOS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<BOS>...<EOS>"の三連に変換する
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
for i in range(1, max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2): # (1, 152, 75)
ids_chunk = (
input_ids[0].unsqueeze(0),
input_ids[i : i + tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0),
)
ids_chunk = torch.cat(ids_chunk)
iids_list.append(ids_chunk)
else:
# v2 or SDXL
# 77以上の時は "<BOS> .... <EOS> <PAD> <PAD>..." でトータル227とかになっているので、"<BOS>...<EOS> <PAD> <PAD> ..."の三連に変換する
for i in range(1, max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2):
ids_chunk = (
input_ids[0].unsqueeze(0), # BOS
input_ids[i : i + tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0),
) # PAD or EOS
ids_chunk = torch.cat(ids_chunk)
# 末尾が <EOS> <PAD> または <PAD> <PAD> の場合は、何もしなくてよい
# 末尾が x <PAD/EOS> の場合は末尾を <EOS> に変える(x <EOS> なら結果的に変化なし)
if ids_chunk[-2] != tokenizer.eos_token_id and ids_chunk[-2] != tokenizer.pad_token_id:
ids_chunk[-1] = tokenizer.eos_token_id
# 先頭が <BOS> <PAD> ... の場合は <BOS> <EOS> <PAD> ... に変える
if ids_chunk[1] == tokenizer.pad_token_id:
ids_chunk[1] = tokenizer.eos_token_id
iids_list.append(ids_chunk)
input_ids = torch.stack(iids_list) # 3,77
if weighted:
weights = weights.squeeze(0)
new_weights = torch.ones(input_ids.shape)
for i in range(1, max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2):
b = i // (tokenizer.model_max_length - 2)
new_weights[b, 1 : 1 + tokenizer.model_max_length - 2] = weights[i : i + tokenizer.model_max_length - 2]
weights = new_weights
if weighted:
return input_ids, weights
return input_ids
class TextEncodingStrategy:
_strategy = None # strategy instance: actual strategy class
@classmethod
def set_strategy(cls, strategy):
if cls._strategy is not None:
raise RuntimeError(f"Internal error. {cls.__name__} strategy is already set")
cls._strategy = strategy
@classmethod
def get_strategy(cls) -> Optional["TextEncodingStrategy"]:
return cls._strategy
def encode_tokens(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], tokens: List[torch.Tensor]
) -> List[torch.Tensor]:
"""
Encode tokens into embeddings and outputs.
:param tokens: list of token tensors for each TextModel
:return: list of output embeddings for each architecture
"""
raise NotImplementedError
def encode_tokens_with_weights(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], tokens: List[torch.Tensor], weights: List[torch.Tensor]
) -> List[torch.Tensor]:
"""
Encode tokens into embeddings and outputs.
:param tokens: list of token tensors for each TextModel
:param weights: list of weight tensors for each TextModel
:return: list of output embeddings for each architecture
"""
raise NotImplementedError
class TextEncoderOutputsCachingStrategy:
_strategy = None # strategy instance: actual strategy class
def __init__(
self,
cache_to_disk: bool,
batch_size: Optional[int],
skip_disk_cache_validity_check: bool,
is_partial: bool = False,
is_weighted: bool = False,
) -> None:
self._cache_to_disk = cache_to_disk
self._batch_size = batch_size
self.skip_disk_cache_validity_check = skip_disk_cache_validity_check
self._is_partial = is_partial
self._is_weighted = is_weighted
@classmethod
def set_strategy(cls, strategy):
if cls._strategy is not None:
raise RuntimeError(f"Internal error. {cls.__name__} strategy is already set")
cls._strategy = strategy
@classmethod
def get_strategy(cls) -> Optional["TextEncoderOutputsCachingStrategy"]:
return cls._strategy
@property
def cache_to_disk(self):
return self._cache_to_disk
@property
def batch_size(self):
return self._batch_size
@property
def is_partial(self):
return self._is_partial
@property
def is_weighted(self):
return self._is_weighted
def get_outputs_npz_path(self, image_abs_path: str) -> str:
raise NotImplementedError
def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]:
raise NotImplementedError
def is_disk_cached_outputs_expected(self, npz_path: str) -> bool:
raise NotImplementedError
def cache_batch_outputs(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, batch: List
):
raise NotImplementedError
class LatentsCachingStrategy:
# TODO commonize utillity functions to this class, such as npz handling etc.
_strategy = None # strategy instance: actual strategy class
def __init__(self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None:
self._cache_to_disk = cache_to_disk
self._batch_size = batch_size
self.skip_disk_cache_validity_check = skip_disk_cache_validity_check
@classmethod
def set_strategy(cls, strategy):
if cls._strategy is not None:
raise RuntimeError(f"Internal error. {cls.__name__} strategy is already set")
cls._strategy = strategy
@classmethod
def get_strategy(cls) -> Optional["LatentsCachingStrategy"]:
return cls._strategy
@property
def cache_to_disk(self):
return self._cache_to_disk
@property
def batch_size(self):
return self._batch_size
@property
def cache_suffix(self):
raise NotImplementedError
def get_image_size_from_disk_cache_path(self, absolute_path: str, npz_path: str) -> Tuple[Optional[int], Optional[int]]:
w, h = os.path.splitext(npz_path)[0].split("_")[-2].split("x")
return int(w), int(h)
def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str:
raise NotImplementedError
def is_disk_cached_latents_expected(
self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool
) -> bool:
raise NotImplementedError
def cache_batch_latents(self, model: Any, batch: List, flip_aug: bool, alpha_mask: bool, random_crop: bool):
raise NotImplementedError
def _default_is_disk_cached_latents_expected(
self,
latents_stride: int,
bucket_reso: Tuple[int, int],
npz_path: str,
flip_aug: bool,
alpha_mask: bool,
multi_resolution: bool = False,
):
if not self.cache_to_disk:
return False
if not os.path.exists(npz_path):
return False
if self.skip_disk_cache_validity_check:
return True
expected_latents_size = (bucket_reso[1] // latents_stride, bucket_reso[0] // latents_stride) # bucket_reso is (W, H)
# e.g. "_32x64", HxW
key_reso_suffix = f"_{expected_latents_size[0]}x{expected_latents_size[1]}" if multi_resolution else ""
try:
npz = np.load(npz_path)
if "latents" + key_reso_suffix not in npz:
return False
if flip_aug and "latents_flipped" + key_reso_suffix not in npz:
return False
if alpha_mask and "alpha_mask" + key_reso_suffix not in npz:
return False
except Exception as e:
logger.error(f"Error loading file: {npz_path}")
raise e
return True
# TODO remove circular dependency for ImageInfo
def _default_cache_batch_latents(
self,
encode_by_vae,
vae_device,
vae_dtype,
image_infos: List,
flip_aug: bool,
alpha_mask: bool,
random_crop: bool,
multi_resolution: bool = False,
):
"""
Default implementation for cache_batch_latents. Image loading, VAE, flipping, alpha mask handling are common.
"""
from library import train_util # import here to avoid circular import
img_tensor, alpha_masks, original_sizes, crop_ltrbs = train_util.load_images_and_masks_for_caching(
image_infos, alpha_mask, random_crop
)
img_tensor = img_tensor.to(device=vae_device, dtype=vae_dtype)
with torch.no_grad():
latents_tensors = encode_by_vae(img_tensor).to("cpu")
if flip_aug:
img_tensor = torch.flip(img_tensor, dims=[3])
with torch.no_grad():
flipped_latents = encode_by_vae(img_tensor).to("cpu")
else:
flipped_latents = [None] * len(latents_tensors)
# for info, latents, flipped_latent, alpha_mask in zip(image_infos, latents_tensors, flipped_latents, alpha_masks):
for i in range(len(image_infos)):
info = image_infos[i]
latents = latents_tensors[i]
flipped_latent = flipped_latents[i]
alpha_mask = alpha_masks[i]
original_size = original_sizes[i]
crop_ltrb = crop_ltrbs[i]
latents_size = latents.shape[1:3] # H, W
key_reso_suffix = f"_{latents_size[0]}x{latents_size[1]}" if multi_resolution else "" # e.g. "_32x64", HxW
if self.cache_to_disk:
self.save_latents_to_disk(
info.latents_npz, latents, original_size, crop_ltrb, flipped_latent, alpha_mask, key_reso_suffix
)
else:
info.latents_original_size = original_size
info.latents_crop_ltrb = crop_ltrb
info.latents = latents
if flip_aug:
info.latents_flipped = flipped_latent
info.alpha_mask = alpha_mask
def load_latents_from_disk(
self, npz_path: str, bucket_reso: Tuple[int, int]
) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]:
"""
for SD/SDXL
"""
return self._default_load_latents_from_disk(None, npz_path, bucket_reso)
def _default_load_latents_from_disk(
self, latents_stride: Optional[int], npz_path: str, bucket_reso: Tuple[int, int]
) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]:
if latents_stride is None:
key_reso_suffix = ""
else:
latents_size = (bucket_reso[1] // latents_stride, bucket_reso[0] // latents_stride) # bucket_reso is (W, H)
key_reso_suffix = f"_{latents_size[0]}x{latents_size[1]}" # e.g. "_32x64", HxW
npz = np.load(npz_path)
if "latents" + key_reso_suffix not in npz:
raise ValueError(f"latents{key_reso_suffix} not found in {npz_path}")
latents = npz["latents" + key_reso_suffix]
original_size = npz["original_size" + key_reso_suffix].tolist()
crop_ltrb = npz["crop_ltrb" + key_reso_suffix].tolist()
flipped_latents = npz["latents_flipped" + key_reso_suffix] if "latents_flipped" + key_reso_suffix in npz else None
alpha_mask = npz["alpha_mask" + key_reso_suffix] if "alpha_mask" + key_reso_suffix in npz else None
return latents, original_size, crop_ltrb, flipped_latents, alpha_mask
def save_latents_to_disk(
self,
npz_path,
latents_tensor,
original_size,
crop_ltrb,
flipped_latents_tensor=None,
alpha_mask=None,
key_reso_suffix="",
):
kwargs = {}
if os.path.exists(npz_path):
# load existing npz and update it
npz = np.load(npz_path)
for key in npz.files:
kwargs[key] = npz[key]
kwargs["latents" + key_reso_suffix] = latents_tensor.float().cpu().numpy()
kwargs["original_size" + key_reso_suffix] = np.array(original_size)
kwargs["crop_ltrb" + key_reso_suffix] = np.array(crop_ltrb)
if flipped_latents_tensor is not None:
kwargs["latents_flipped" + key_reso_suffix] = flipped_latents_tensor.float().cpu().numpy()
if alpha_mask is not None:
kwargs["alpha_mask" + key_reso_suffix] = alpha_mask.float().cpu().numpy()
np.savez(npz_path, **kwargs)
|