Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,564 Bytes
c1bc1cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
from dataclasses import dataclass
import math
import re
from typing import Dict, List, Optional, Union
import torch
import safetensors
from safetensors.torch import load_file
from accelerate import init_empty_weights
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPConfig, CLIPTextConfig
from .utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
from library import sd3_models
# TODO move some of functions to model_util.py
from library import sdxl_model_util
# region models
# TODO remove dependency on flux_utils
from library.utils import load_safetensors
from library.flux_utils import load_t5xxl as flux_utils_load_t5xxl
def analyze_state_dict_state(state_dict: Dict, prefix: str = ""):
logger.info(f"Analyzing state dict state...")
# analyze configs
patch_size = state_dict[f"{prefix}x_embedder.proj.weight"].shape[2]
depth = state_dict[f"{prefix}x_embedder.proj.weight"].shape[0] // 64
num_patches = state_dict[f"{prefix}pos_embed"].shape[1]
pos_embed_max_size = round(math.sqrt(num_patches))
adm_in_channels = state_dict[f"{prefix}y_embedder.mlp.0.weight"].shape[1]
context_shape = state_dict[f"{prefix}context_embedder.weight"].shape
qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in state_dict.keys() else None
# x_block_self_attn_layers.append(int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1]))
x_block_self_attn_layers = []
re_attn = re.compile(r"\.(\d+)\.x_block\.attn2\.ln_k\.weight")
for key in list(state_dict.keys()):
m = re_attn.search(key)
if m:
x_block_self_attn_layers.append(int(m.group(1)))
context_embedder_in_features = context_shape[1]
context_embedder_out_features = context_shape[0]
# only supports 3-5-large, medium or 3-medium
if qk_norm is not None:
if len(x_block_self_attn_layers) == 0:
model_type = "3-5-large"
else:
model_type = "3-5-medium"
else:
model_type = "3-medium"
params = sd3_models.SD3Params(
patch_size=patch_size,
depth=depth,
num_patches=num_patches,
pos_embed_max_size=pos_embed_max_size,
adm_in_channels=adm_in_channels,
qk_norm=qk_norm,
x_block_self_attn_layers=x_block_self_attn_layers,
context_embedder_in_features=context_embedder_in_features,
context_embedder_out_features=context_embedder_out_features,
model_type=model_type,
)
logger.info(f"Analyzed state dict state: {params}")
return params
def load_mmdit(
state_dict: Dict, dtype: Optional[Union[str, torch.dtype]], device: Union[str, torch.device], attn_mode: str = "torch"
) -> sd3_models.MMDiT:
mmdit_sd = {}
mmdit_prefix = "model.diffusion_model."
for k in list(state_dict.keys()):
if k.startswith(mmdit_prefix):
mmdit_sd[k[len(mmdit_prefix) :]] = state_dict.pop(k)
# load MMDiT
logger.info("Building MMDit")
params = analyze_state_dict_state(mmdit_sd)
with init_empty_weights():
mmdit = sd3_models.create_sd3_mmdit(params, attn_mode)
logger.info("Loading state dict...")
info = mmdit.load_state_dict(mmdit_sd, strict=False, assign=True)
logger.info(f"Loaded MMDiT: {info}")
return mmdit
def load_clip_l(
clip_l_path: Optional[str],
dtype: Optional[Union[str, torch.dtype]],
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[Dict] = None,
):
clip_l_sd = None
if clip_l_path is None:
if "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight" in state_dict:
# found clip_l: remove prefix "text_encoders.clip_l."
logger.info("clip_l is included in the checkpoint")
clip_l_sd = {}
prefix = "text_encoders.clip_l."
for k in list(state_dict.keys()):
if k.startswith(prefix):
clip_l_sd[k[len(prefix) :]] = state_dict.pop(k)
elif clip_l_path is None:
logger.info("clip_l is not included in the checkpoint and clip_l_path is not provided")
return None
# load clip_l
logger.info("Building CLIP-L")
config = CLIPTextConfig(
vocab_size=49408,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=1e-05,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
model_type="clip_text_model",
projection_dim=768,
# torch_dtype="float32",
# transformers_version="4.25.0.dev0",
)
with init_empty_weights():
clip = CLIPTextModelWithProjection(config)
if clip_l_sd is None:
logger.info(f"Loading state dict from {clip_l_path}")
clip_l_sd = load_safetensors(clip_l_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
if "text_projection.weight" not in clip_l_sd:
logger.info("Adding text_projection.weight to clip_l_sd")
clip_l_sd["text_projection.weight"] = torch.eye(768, dtype=dtype, device=device)
info = clip.load_state_dict(clip_l_sd, strict=False, assign=True)
logger.info(f"Loaded CLIP-L: {info}")
return clip
def load_clip_g(
clip_g_path: Optional[str],
dtype: Optional[Union[str, torch.dtype]],
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[Dict] = None,
):
clip_g_sd = None
if state_dict is not None:
if "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight" in state_dict:
# found clip_g: remove prefix "text_encoders.clip_g."
logger.info("clip_g is included in the checkpoint")
clip_g_sd = {}
prefix = "text_encoders.clip_g."
for k in list(state_dict.keys()):
if k.startswith(prefix):
clip_g_sd[k[len(prefix) :]] = state_dict.pop(k)
elif clip_g_path is None:
logger.info("clip_g is not included in the checkpoint and clip_g_path is not provided")
return None
# load clip_g
logger.info("Building CLIP-G")
config = CLIPTextConfig(
vocab_size=49408,
hidden_size=1280,
intermediate_size=5120,
num_hidden_layers=32,
num_attention_heads=20,
max_position_embeddings=77,
hidden_act="gelu",
layer_norm_eps=1e-05,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
model_type="clip_text_model",
projection_dim=1280,
# torch_dtype="float32",
# transformers_version="4.25.0.dev0",
)
with init_empty_weights():
clip = CLIPTextModelWithProjection(config)
if clip_g_sd is None:
logger.info(f"Loading state dict from {clip_g_path}")
clip_g_sd = load_safetensors(clip_g_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
info = clip.load_state_dict(clip_g_sd, strict=False, assign=True)
logger.info(f"Loaded CLIP-G: {info}")
return clip
def load_t5xxl(
t5xxl_path: Optional[str],
dtype: Optional[Union[str, torch.dtype]],
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[Dict] = None,
):
t5xxl_sd = None
if state_dict is not None:
if "text_encoders.t5xxl.transformer.encoder.block.0.layer.0.SelfAttention.k.weight" in state_dict:
# found t5xxl: remove prefix "text_encoders.t5xxl."
logger.info("t5xxl is included in the checkpoint")
t5xxl_sd = {}
prefix = "text_encoders.t5xxl."
for k in list(state_dict.keys()):
if k.startswith(prefix):
t5xxl_sd[k[len(prefix) :]] = state_dict.pop(k)
elif t5xxl_path is None:
logger.info("t5xxl is not included in the checkpoint and t5xxl_path is not provided")
return None
return flux_utils_load_t5xxl(t5xxl_path, dtype, device, disable_mmap, state_dict=t5xxl_sd)
def load_vae(
vae_path: Optional[str],
vae_dtype: Optional[Union[str, torch.dtype]],
device: Optional[Union[str, torch.device]],
disable_mmap: bool = False,
state_dict: Optional[Dict] = None,
):
vae_sd = {}
if vae_path:
logger.info(f"Loading VAE from {vae_path}...")
vae_sd = load_safetensors(vae_path, device, disable_mmap)
else:
# remove prefix "first_stage_model."
vae_sd = {}
vae_prefix = "first_stage_model."
for k in list(state_dict.keys()):
if k.startswith(vae_prefix):
vae_sd[k[len(vae_prefix) :]] = state_dict.pop(k)
logger.info("Building VAE")
vae = sd3_models.SDVAE(vae_dtype, device)
logger.info("Loading state dict...")
info = vae.load_state_dict(vae_sd)
logger.info(f"Loaded VAE: {info}")
vae.to(device=device, dtype=vae_dtype) # make sure it's in the right device and dtype
return vae
# endregion
class ModelSamplingDiscreteFlow:
"""Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models"""
def __init__(self, shift=1.0):
self.shift = shift
timesteps = 1000
self.sigmas = self.sigma(torch.arange(1, timesteps + 1, 1))
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma):
return sigma * 1000
def sigma(self, timestep: torch.Tensor):
timestep = timestep / 1000.0
if self.shift == 1.0:
return timestep
return self.shift * timestep / (1 + (self.shift - 1) * timestep)
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
# assert max_denoise is False, "max_denoise not implemented"
# max_denoise is always True, I'm not sure why it's there
return sigma * noise + (1.0 - sigma) * latent_image
|