File size: 19,585 Bytes
c1bc1cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
from dataclasses import replace
import json
import os
from typing import List, Optional, Tuple, Union
import einops
import torch

from safetensors.torch import load_file
from safetensors import safe_open
from accelerate import init_empty_weights
from transformers import CLIPTextModel, CLIPConfig, T5EncoderModel, T5Config

from library.utils import setup_logging

setup_logging()
import logging

logger = logging.getLogger(__name__)

from library import flux_models
from library.utils import load_safetensors

MODEL_VERSION_FLUX_V1 = "flux1"
MODEL_NAME_DEV = "dev"
MODEL_NAME_SCHNELL = "schnell"


def analyze_checkpoint_state(ckpt_path: str) -> Tuple[bool, bool, Tuple[int, int], List[str]]:
    """
    チェックポイントの状態を分析し、DiffusersかBFLか、devかschnellか、ブロック数を計算して返す。

    Args:
        ckpt_path (str): チェックポイントファイルまたはディレクトリのパス。

    Returns:
        Tuple[bool, bool, Tuple[int, int], List[str]]:
            - bool: Diffusersかどうかを示すフラグ。
            - bool: Schnellかどうかを示すフラグ。
            - Tuple[int, int]: ダブルブロックとシングルブロックの数。
            - List[str]: チェックポイントに含まれるキーのリスト。
    """
    # check the state dict: Diffusers or BFL, dev or schnell, number of blocks
    logger.info(f"Checking the state dict: Diffusers or BFL, dev or schnell")

    if os.path.isdir(ckpt_path):  # if ckpt_path is a directory, it is Diffusers
        ckpt_path = os.path.join(ckpt_path, "transformer", "diffusion_pytorch_model-00001-of-00003.safetensors")
    if "00001-of-00003" in ckpt_path:
        ckpt_paths = [ckpt_path.replace("00001-of-00003", f"0000{i}-of-00003") for i in range(1, 4)]
    else:
        ckpt_paths = [ckpt_path]

    keys = []
    for ckpt_path in ckpt_paths:
        with safe_open(ckpt_path, framework="pt") as f:
            keys.extend(f.keys())

    # if the key has annoying prefix, remove it
    if keys[0].startswith("model.diffusion_model."):
        keys = [key.replace("model.diffusion_model.", "") for key in keys]

    is_diffusers = "transformer_blocks.0.attn.add_k_proj.bias" in keys
    is_schnell = not ("guidance_in.in_layer.bias" in keys or "time_text_embed.guidance_embedder.linear_1.bias" in keys)

    # check number of double and single blocks
    if not is_diffusers:
        max_double_block_index = max(
            [int(key.split(".")[1]) for key in keys if key.startswith("double_blocks.") and key.endswith(".img_attn.proj.bias")]
        )
        max_single_block_index = max(
            [int(key.split(".")[1]) for key in keys if key.startswith("single_blocks.") and key.endswith(".modulation.lin.bias")]
        )
    else:
        max_double_block_index = max(
            [
                int(key.split(".")[1])
                for key in keys
                if key.startswith("transformer_blocks.") and key.endswith(".attn.add_k_proj.bias")
            ]
        )
        max_single_block_index = max(
            [
                int(key.split(".")[1])
                for key in keys
                if key.startswith("single_transformer_blocks.") and key.endswith(".attn.to_k.bias")
            ]
        )

    num_double_blocks = max_double_block_index + 1
    num_single_blocks = max_single_block_index + 1

    return is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths


def load_flow_model(
    ckpt_path: str, dtype: Optional[torch.dtype], device: Union[str, torch.device], disable_mmap: bool = False
) -> Tuple[bool, flux_models.Flux]:
    is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths = analyze_checkpoint_state(ckpt_path)
    name = MODEL_NAME_DEV if not is_schnell else MODEL_NAME_SCHNELL

    # build model
    logger.info(f"Building Flux model {name} from {'Diffusers' if is_diffusers else 'BFL'} checkpoint")
    with torch.device("meta"):
        params = flux_models.configs[name].params

        # set the number of blocks
        if params.depth != num_double_blocks:
            logger.info(f"Setting the number of double blocks from {params.depth} to {num_double_blocks}")
            params = replace(params, depth=num_double_blocks)
        if params.depth_single_blocks != num_single_blocks:
            logger.info(f"Setting the number of single blocks from {params.depth_single_blocks} to {num_single_blocks}")
            params = replace(params, depth_single_blocks=num_single_blocks)

        model = flux_models.Flux(params)
        if dtype is not None:
            model = model.to(dtype)

    # load_sft doesn't support torch.device
    logger.info(f"Loading state dict from {ckpt_path}")
    sd = {}
    for ckpt_path in ckpt_paths:
        sd.update(load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype))

    # convert Diffusers to BFL
    if is_diffusers:
        logger.info("Converting Diffusers to BFL")
        sd = convert_diffusers_sd_to_bfl(sd, num_double_blocks, num_single_blocks)
        logger.info("Converted Diffusers to BFL")

    # if the key has annoying prefix, remove it
    for key in list(sd.keys()):
        new_key = key.replace("model.diffusion_model.", "")
        if new_key == key:
            break  # the model doesn't have annoying prefix
        sd[new_key] = sd.pop(key)

    info = model.load_state_dict(sd, strict=False, assign=True)
    logger.info(f"Loaded Flux: {info}")
    return is_schnell, model


def load_ae(
    ckpt_path: str, dtype: torch.dtype, device: Union[str, torch.device], disable_mmap: bool = False
) -> flux_models.AutoEncoder:
    logger.info("Building AutoEncoder")
    with torch.device("meta"):
        # dev and schnell have the same AE params
        ae = flux_models.AutoEncoder(flux_models.configs[MODEL_NAME_DEV].ae_params).to(dtype)

    logger.info(f"Loading state dict from {ckpt_path}")
    sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
    info = ae.load_state_dict(sd, strict=False, assign=True)
    logger.info(f"Loaded AE: {info}")
    return ae


def load_clip_l(
    ckpt_path: Optional[str],
    dtype: torch.dtype,
    device: Union[str, torch.device],
    disable_mmap: bool = False,
    state_dict: Optional[dict] = None,
) -> CLIPTextModel:
    logger.info("Building CLIP-L")
    CLIPL_CONFIG = {
        "_name_or_path": "clip-vit-large-patch14/",
        "architectures": ["CLIPModel"],
        "initializer_factor": 1.0,
        "logit_scale_init_value": 2.6592,
        "model_type": "clip",
        "projection_dim": 768,
        # "text_config": {
        "_name_or_path": "",
        "add_cross_attention": False,
        "architectures": None,
        "attention_dropout": 0.0,
        "bad_words_ids": None,
        "bos_token_id": 0,
        "chunk_size_feed_forward": 0,
        "cross_attention_hidden_size": None,
        "decoder_start_token_id": None,
        "diversity_penalty": 0.0,
        "do_sample": False,
        "dropout": 0.0,
        "early_stopping": False,
        "encoder_no_repeat_ngram_size": 0,
        "eos_token_id": 2,
        "finetuning_task": None,
        "forced_bos_token_id": None,
        "forced_eos_token_id": None,
        "hidden_act": "quick_gelu",
        "hidden_size": 768,
        "id2label": {"0": "LABEL_0", "1": "LABEL_1"},
        "initializer_factor": 1.0,
        "initializer_range": 0.02,
        "intermediate_size": 3072,
        "is_decoder": False,
        "is_encoder_decoder": False,
        "label2id": {"LABEL_0": 0, "LABEL_1": 1},
        "layer_norm_eps": 1e-05,
        "length_penalty": 1.0,
        "max_length": 20,
        "max_position_embeddings": 77,
        "min_length": 0,
        "model_type": "clip_text_model",
        "no_repeat_ngram_size": 0,
        "num_attention_heads": 12,
        "num_beam_groups": 1,
        "num_beams": 1,
        "num_hidden_layers": 12,
        "num_return_sequences": 1,
        "output_attentions": False,
        "output_hidden_states": False,
        "output_scores": False,
        "pad_token_id": 1,
        "prefix": None,
        "problem_type": None,
        "projection_dim": 768,
        "pruned_heads": {},
        "remove_invalid_values": False,
        "repetition_penalty": 1.0,
        "return_dict": True,
        "return_dict_in_generate": False,
        "sep_token_id": None,
        "task_specific_params": None,
        "temperature": 1.0,
        "tie_encoder_decoder": False,
        "tie_word_embeddings": True,
        "tokenizer_class": None,
        "top_k": 50,
        "top_p": 1.0,
        "torch_dtype": None,
        "torchscript": False,
        "transformers_version": "4.16.0.dev0",
        "use_bfloat16": False,
        "vocab_size": 49408,
        "hidden_act": "gelu",
        "hidden_size": 1280,
        "intermediate_size": 5120,
        "num_attention_heads": 20,
        "num_hidden_layers": 32,
        # },
        # "text_config_dict": {
        "hidden_size": 768,
        "intermediate_size": 3072,
        "num_attention_heads": 12,
        "num_hidden_layers": 12,
        "projection_dim": 768,
        # },
        # "torch_dtype": "float32",
        # "transformers_version": None,
    }
    config = CLIPConfig(**CLIPL_CONFIG)
    with init_empty_weights():
        clip = CLIPTextModel._from_config(config)

    if state_dict is not None:
        sd = state_dict
    else:
        logger.info(f"Loading state dict from {ckpt_path}")
        sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
    info = clip.load_state_dict(sd, strict=False, assign=True)
    logger.info(f"Loaded CLIP-L: {info}")
    return clip


def load_t5xxl(
    ckpt_path: str,
    dtype: Optional[torch.dtype],
    device: Union[str, torch.device],
    disable_mmap: bool = False,
    state_dict: Optional[dict] = None,
) -> T5EncoderModel:
    T5_CONFIG_JSON = """
{
  "architectures": [
    "T5EncoderModel"
  ],
  "classifier_dropout": 0.0,
  "d_ff": 10240,
  "d_kv": 64,
  "d_model": 4096,
  "decoder_start_token_id": 0,
  "dense_act_fn": "gelu_new",
  "dropout_rate": 0.1,
  "eos_token_id": 1,
  "feed_forward_proj": "gated-gelu",
  "initializer_factor": 1.0,
  "is_encoder_decoder": true,
  "is_gated_act": true,
  "layer_norm_epsilon": 1e-06,
  "model_type": "t5",
  "num_decoder_layers": 24,
  "num_heads": 64,
  "num_layers": 24,
  "output_past": true,
  "pad_token_id": 0,
  "relative_attention_max_distance": 128,
  "relative_attention_num_buckets": 32,
  "tie_word_embeddings": false,
  "torch_dtype": "float16",
  "transformers_version": "4.41.2",
  "use_cache": true,
  "vocab_size": 32128
}
"""
    config = json.loads(T5_CONFIG_JSON)
    config = T5Config(**config)
    with init_empty_weights():
        t5xxl = T5EncoderModel._from_config(config)

    if state_dict is not None:
        sd = state_dict
    else:
        logger.info(f"Loading state dict from {ckpt_path}")
        sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
    info = t5xxl.load_state_dict(sd, strict=False, assign=True)
    logger.info(f"Loaded T5xxl: {info}")
    return t5xxl


def get_t5xxl_actual_dtype(t5xxl: T5EncoderModel) -> torch.dtype:
    # nn.Embedding is the first layer, but it could be casted to bfloat16 or float32
    return t5xxl.encoder.block[0].layer[0].SelfAttention.q.weight.dtype


def prepare_img_ids(batch_size: int, packed_latent_height: int, packed_latent_width: int):
    img_ids = torch.zeros(packed_latent_height, packed_latent_width, 3)
    img_ids[..., 1] = img_ids[..., 1] + torch.arange(packed_latent_height)[:, None]
    img_ids[..., 2] = img_ids[..., 2] + torch.arange(packed_latent_width)[None, :]
    img_ids = einops.repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
    return img_ids


def unpack_latents(x: torch.Tensor, packed_latent_height: int, packed_latent_width: int) -> torch.Tensor:
    """
    x: [b (h w) (c ph pw)] -> [b c (h ph) (w pw)], ph=2, pw=2
    """
    x = einops.rearrange(x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=packed_latent_height, w=packed_latent_width, ph=2, pw=2)
    return x


def pack_latents(x: torch.Tensor) -> torch.Tensor:
    """
    x: [b c (h ph) (w pw)] -> [b (h w) (c ph pw)], ph=2, pw=2
    """
    x = einops.rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    return x


# region Diffusers

NUM_DOUBLE_BLOCKS = 19
NUM_SINGLE_BLOCKS = 38

BFL_TO_DIFFUSERS_MAP = {
    "time_in.in_layer.weight": ["time_text_embed.timestep_embedder.linear_1.weight"],
    "time_in.in_layer.bias": ["time_text_embed.timestep_embedder.linear_1.bias"],
    "time_in.out_layer.weight": ["time_text_embed.timestep_embedder.linear_2.weight"],
    "time_in.out_layer.bias": ["time_text_embed.timestep_embedder.linear_2.bias"],
    "vector_in.in_layer.weight": ["time_text_embed.text_embedder.linear_1.weight"],
    "vector_in.in_layer.bias": ["time_text_embed.text_embedder.linear_1.bias"],
    "vector_in.out_layer.weight": ["time_text_embed.text_embedder.linear_2.weight"],
    "vector_in.out_layer.bias": ["time_text_embed.text_embedder.linear_2.bias"],
    "guidance_in.in_layer.weight": ["time_text_embed.guidance_embedder.linear_1.weight"],
    "guidance_in.in_layer.bias": ["time_text_embed.guidance_embedder.linear_1.bias"],
    "guidance_in.out_layer.weight": ["time_text_embed.guidance_embedder.linear_2.weight"],
    "guidance_in.out_layer.bias": ["time_text_embed.guidance_embedder.linear_2.bias"],
    "txt_in.weight": ["context_embedder.weight"],
    "txt_in.bias": ["context_embedder.bias"],
    "img_in.weight": ["x_embedder.weight"],
    "img_in.bias": ["x_embedder.bias"],
    "double_blocks.().img_mod.lin.weight": ["norm1.linear.weight"],
    "double_blocks.().img_mod.lin.bias": ["norm1.linear.bias"],
    "double_blocks.().txt_mod.lin.weight": ["norm1_context.linear.weight"],
    "double_blocks.().txt_mod.lin.bias": ["norm1_context.linear.bias"],
    "double_blocks.().img_attn.qkv.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight"],
    "double_blocks.().img_attn.qkv.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias"],
    "double_blocks.().txt_attn.qkv.weight": ["attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight"],
    "double_blocks.().txt_attn.qkv.bias": ["attn.add_q_proj.bias", "attn.add_k_proj.bias", "attn.add_v_proj.bias"],
    "double_blocks.().img_attn.norm.query_norm.scale": ["attn.norm_q.weight"],
    "double_blocks.().img_attn.norm.key_norm.scale": ["attn.norm_k.weight"],
    "double_blocks.().txt_attn.norm.query_norm.scale": ["attn.norm_added_q.weight"],
    "double_blocks.().txt_attn.norm.key_norm.scale": ["attn.norm_added_k.weight"],
    "double_blocks.().img_mlp.0.weight": ["ff.net.0.proj.weight"],
    "double_blocks.().img_mlp.0.bias": ["ff.net.0.proj.bias"],
    "double_blocks.().img_mlp.2.weight": ["ff.net.2.weight"],
    "double_blocks.().img_mlp.2.bias": ["ff.net.2.bias"],
    "double_blocks.().txt_mlp.0.weight": ["ff_context.net.0.proj.weight"],
    "double_blocks.().txt_mlp.0.bias": ["ff_context.net.0.proj.bias"],
    "double_blocks.().txt_mlp.2.weight": ["ff_context.net.2.weight"],
    "double_blocks.().txt_mlp.2.bias": ["ff_context.net.2.bias"],
    "double_blocks.().img_attn.proj.weight": ["attn.to_out.0.weight"],
    "double_blocks.().img_attn.proj.bias": ["attn.to_out.0.bias"],
    "double_blocks.().txt_attn.proj.weight": ["attn.to_add_out.weight"],
    "double_blocks.().txt_attn.proj.bias": ["attn.to_add_out.bias"],
    "single_blocks.().modulation.lin.weight": ["norm.linear.weight"],
    "single_blocks.().modulation.lin.bias": ["norm.linear.bias"],
    "single_blocks.().linear1.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight"],
    "single_blocks.().linear1.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", "proj_mlp.bias"],
    "single_blocks.().linear2.weight": ["proj_out.weight"],
    "single_blocks.().norm.query_norm.scale": ["attn.norm_q.weight"],
    "single_blocks.().norm.key_norm.scale": ["attn.norm_k.weight"],
    "single_blocks.().linear2.weight": ["proj_out.weight"],
    "single_blocks.().linear2.bias": ["proj_out.bias"],
    "final_layer.linear.weight": ["proj_out.weight"],
    "final_layer.linear.bias": ["proj_out.bias"],
    "final_layer.adaLN_modulation.1.weight": ["norm_out.linear.weight"],
    "final_layer.adaLN_modulation.1.bias": ["norm_out.linear.bias"],
}


def make_diffusers_to_bfl_map(num_double_blocks: int, num_single_blocks: int) -> dict[str, tuple[int, str]]:
    # make reverse map from diffusers map
    diffusers_to_bfl_map = {}  # key: diffusers_key, value: (index, bfl_key)
    for b in range(num_double_blocks):
        for key, weights in BFL_TO_DIFFUSERS_MAP.items():
            if key.startswith("double_blocks."):
                block_prefix = f"transformer_blocks.{b}."
                for i, weight in enumerate(weights):
                    diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}"))
    for b in range(num_single_blocks):
        for key, weights in BFL_TO_DIFFUSERS_MAP.items():
            if key.startswith("single_blocks."):
                block_prefix = f"single_transformer_blocks.{b}."
                for i, weight in enumerate(weights):
                    diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}"))
    for key, weights in BFL_TO_DIFFUSERS_MAP.items():
        if not (key.startswith("double_blocks.") or key.startswith("single_blocks.")):
            for i, weight in enumerate(weights):
                diffusers_to_bfl_map[weight] = (i, key)
    return diffusers_to_bfl_map


def convert_diffusers_sd_to_bfl(
    diffusers_sd: dict[str, torch.Tensor], num_double_blocks: int = NUM_DOUBLE_BLOCKS, num_single_blocks: int = NUM_SINGLE_BLOCKS
) -> dict[str, torch.Tensor]:
    diffusers_to_bfl_map = make_diffusers_to_bfl_map(num_double_blocks, num_single_blocks)

    # iterate over three safetensors files to reduce memory usage
    flux_sd = {}
    for diffusers_key, tensor in diffusers_sd.items():
        if diffusers_key in diffusers_to_bfl_map:
            index, bfl_key = diffusers_to_bfl_map[diffusers_key]
            if bfl_key not in flux_sd:
                flux_sd[bfl_key] = []
            flux_sd[bfl_key].append((index, tensor))
        else:
            logger.error(f"Error: Key not found in diffusers_to_bfl_map: {diffusers_key}")
            raise KeyError(f"Key not found in diffusers_to_bfl_map: {diffusers_key}")

    # concat tensors if multiple tensors are mapped to a single key, sort by index
    for key, values in flux_sd.items():
        if len(values) == 1:
            flux_sd[key] = values[0][1]
        else:
            flux_sd[key] = torch.cat([value[1] for value in sorted(values, key=lambda x: x[0])])

    # special case for final_layer.adaLN_modulation.1.weight and final_layer.adaLN_modulation.1.bias
    def swap_scale_shift(weight):
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        return new_weight

    if "final_layer.adaLN_modulation.1.weight" in flux_sd:
        flux_sd["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.weight"])
    if "final_layer.adaLN_modulation.1.bias" in flux_sd:
        flux_sd["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.bias"])

    return flux_sd


# endregion