Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,585 Bytes
c1bc1cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
from dataclasses import replace
import json
import os
from typing import List, Optional, Tuple, Union
import einops
import torch
from safetensors.torch import load_file
from safetensors import safe_open
from accelerate import init_empty_weights
from transformers import CLIPTextModel, CLIPConfig, T5EncoderModel, T5Config
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
from library import flux_models
from library.utils import load_safetensors
MODEL_VERSION_FLUX_V1 = "flux1"
MODEL_NAME_DEV = "dev"
MODEL_NAME_SCHNELL = "schnell"
def analyze_checkpoint_state(ckpt_path: str) -> Tuple[bool, bool, Tuple[int, int], List[str]]:
"""
チェックポイントの状態を分析し、DiffusersかBFLか、devかschnellか、ブロック数を計算して返す。
Args:
ckpt_path (str): チェックポイントファイルまたはディレクトリのパス。
Returns:
Tuple[bool, bool, Tuple[int, int], List[str]]:
- bool: Diffusersかどうかを示すフラグ。
- bool: Schnellかどうかを示すフラグ。
- Tuple[int, int]: ダブルブロックとシングルブロックの数。
- List[str]: チェックポイントに含まれるキーのリスト。
"""
# check the state dict: Diffusers or BFL, dev or schnell, number of blocks
logger.info(f"Checking the state dict: Diffusers or BFL, dev or schnell")
if os.path.isdir(ckpt_path): # if ckpt_path is a directory, it is Diffusers
ckpt_path = os.path.join(ckpt_path, "transformer", "diffusion_pytorch_model-00001-of-00003.safetensors")
if "00001-of-00003" in ckpt_path:
ckpt_paths = [ckpt_path.replace("00001-of-00003", f"0000{i}-of-00003") for i in range(1, 4)]
else:
ckpt_paths = [ckpt_path]
keys = []
for ckpt_path in ckpt_paths:
with safe_open(ckpt_path, framework="pt") as f:
keys.extend(f.keys())
# if the key has annoying prefix, remove it
if keys[0].startswith("model.diffusion_model."):
keys = [key.replace("model.diffusion_model.", "") for key in keys]
is_diffusers = "transformer_blocks.0.attn.add_k_proj.bias" in keys
is_schnell = not ("guidance_in.in_layer.bias" in keys or "time_text_embed.guidance_embedder.linear_1.bias" in keys)
# check number of double and single blocks
if not is_diffusers:
max_double_block_index = max(
[int(key.split(".")[1]) for key in keys if key.startswith("double_blocks.") and key.endswith(".img_attn.proj.bias")]
)
max_single_block_index = max(
[int(key.split(".")[1]) for key in keys if key.startswith("single_blocks.") and key.endswith(".modulation.lin.bias")]
)
else:
max_double_block_index = max(
[
int(key.split(".")[1])
for key in keys
if key.startswith("transformer_blocks.") and key.endswith(".attn.add_k_proj.bias")
]
)
max_single_block_index = max(
[
int(key.split(".")[1])
for key in keys
if key.startswith("single_transformer_blocks.") and key.endswith(".attn.to_k.bias")
]
)
num_double_blocks = max_double_block_index + 1
num_single_blocks = max_single_block_index + 1
return is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths
def load_flow_model(
ckpt_path: str, dtype: Optional[torch.dtype], device: Union[str, torch.device], disable_mmap: bool = False
) -> Tuple[bool, flux_models.Flux]:
is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths = analyze_checkpoint_state(ckpt_path)
name = MODEL_NAME_DEV if not is_schnell else MODEL_NAME_SCHNELL
# build model
logger.info(f"Building Flux model {name} from {'Diffusers' if is_diffusers else 'BFL'} checkpoint")
with torch.device("meta"):
params = flux_models.configs[name].params
# set the number of blocks
if params.depth != num_double_blocks:
logger.info(f"Setting the number of double blocks from {params.depth} to {num_double_blocks}")
params = replace(params, depth=num_double_blocks)
if params.depth_single_blocks != num_single_blocks:
logger.info(f"Setting the number of single blocks from {params.depth_single_blocks} to {num_single_blocks}")
params = replace(params, depth_single_blocks=num_single_blocks)
model = flux_models.Flux(params)
if dtype is not None:
model = model.to(dtype)
# load_sft doesn't support torch.device
logger.info(f"Loading state dict from {ckpt_path}")
sd = {}
for ckpt_path in ckpt_paths:
sd.update(load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype))
# convert Diffusers to BFL
if is_diffusers:
logger.info("Converting Diffusers to BFL")
sd = convert_diffusers_sd_to_bfl(sd, num_double_blocks, num_single_blocks)
logger.info("Converted Diffusers to BFL")
# if the key has annoying prefix, remove it
for key in list(sd.keys()):
new_key = key.replace("model.diffusion_model.", "")
if new_key == key:
break # the model doesn't have annoying prefix
sd[new_key] = sd.pop(key)
info = model.load_state_dict(sd, strict=False, assign=True)
logger.info(f"Loaded Flux: {info}")
return is_schnell, model
def load_ae(
ckpt_path: str, dtype: torch.dtype, device: Union[str, torch.device], disable_mmap: bool = False
) -> flux_models.AutoEncoder:
logger.info("Building AutoEncoder")
with torch.device("meta"):
# dev and schnell have the same AE params
ae = flux_models.AutoEncoder(flux_models.configs[MODEL_NAME_DEV].ae_params).to(dtype)
logger.info(f"Loading state dict from {ckpt_path}")
sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
info = ae.load_state_dict(sd, strict=False, assign=True)
logger.info(f"Loaded AE: {info}")
return ae
def load_clip_l(
ckpt_path: Optional[str],
dtype: torch.dtype,
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[dict] = None,
) -> CLIPTextModel:
logger.info("Building CLIP-L")
CLIPL_CONFIG = {
"_name_or_path": "clip-vit-large-patch14/",
"architectures": ["CLIPModel"],
"initializer_factor": 1.0,
"logit_scale_init_value": 2.6592,
"model_type": "clip",
"projection_dim": 768,
# "text_config": {
"_name_or_path": "",
"add_cross_attention": False,
"architectures": None,
"attention_dropout": 0.0,
"bad_words_ids": None,
"bos_token_id": 0,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": None,
"decoder_start_token_id": None,
"diversity_penalty": 0.0,
"do_sample": False,
"dropout": 0.0,
"early_stopping": False,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"finetuning_task": None,
"forced_bos_token_id": None,
"forced_eos_token_id": None,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"id2label": {"0": "LABEL_0", "1": "LABEL_1"},
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": False,
"is_encoder_decoder": False,
"label2id": {"LABEL_0": 0, "LABEL_1": 1},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 77,
"min_length": 0,
"model_type": "clip_text_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": False,
"output_hidden_states": False,
"output_scores": False,
"pad_token_id": 1,
"prefix": None,
"problem_type": None,
"projection_dim": 768,
"pruned_heads": {},
"remove_invalid_values": False,
"repetition_penalty": 1.0,
"return_dict": True,
"return_dict_in_generate": False,
"sep_token_id": None,
"task_specific_params": None,
"temperature": 1.0,
"tie_encoder_decoder": False,
"tie_word_embeddings": True,
"tokenizer_class": None,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": None,
"torchscript": False,
"transformers_version": "4.16.0.dev0",
"use_bfloat16": False,
"vocab_size": 49408,
"hidden_act": "gelu",
"hidden_size": 1280,
"intermediate_size": 5120,
"num_attention_heads": 20,
"num_hidden_layers": 32,
# },
# "text_config_dict": {
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"projection_dim": 768,
# },
# "torch_dtype": "float32",
# "transformers_version": None,
}
config = CLIPConfig(**CLIPL_CONFIG)
with init_empty_weights():
clip = CLIPTextModel._from_config(config)
if state_dict is not None:
sd = state_dict
else:
logger.info(f"Loading state dict from {ckpt_path}")
sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
info = clip.load_state_dict(sd, strict=False, assign=True)
logger.info(f"Loaded CLIP-L: {info}")
return clip
def load_t5xxl(
ckpt_path: str,
dtype: Optional[torch.dtype],
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[dict] = None,
) -> T5EncoderModel:
T5_CONFIG_JSON = """
{
"architectures": [
"T5EncoderModel"
],
"classifier_dropout": 0.0,
"d_ff": 10240,
"d_kv": 64,
"d_model": 4096,
"decoder_start_token_id": 0,
"dense_act_fn": "gelu_new",
"dropout_rate": 0.1,
"eos_token_id": 1,
"feed_forward_proj": "gated-gelu",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 24,
"num_heads": 64,
"num_layers": 24,
"output_past": true,
"pad_token_id": 0,
"relative_attention_max_distance": 128,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.41.2",
"use_cache": true,
"vocab_size": 32128
}
"""
config = json.loads(T5_CONFIG_JSON)
config = T5Config(**config)
with init_empty_weights():
t5xxl = T5EncoderModel._from_config(config)
if state_dict is not None:
sd = state_dict
else:
logger.info(f"Loading state dict from {ckpt_path}")
sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
info = t5xxl.load_state_dict(sd, strict=False, assign=True)
logger.info(f"Loaded T5xxl: {info}")
return t5xxl
def get_t5xxl_actual_dtype(t5xxl: T5EncoderModel) -> torch.dtype:
# nn.Embedding is the first layer, but it could be casted to bfloat16 or float32
return t5xxl.encoder.block[0].layer[0].SelfAttention.q.weight.dtype
def prepare_img_ids(batch_size: int, packed_latent_height: int, packed_latent_width: int):
img_ids = torch.zeros(packed_latent_height, packed_latent_width, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(packed_latent_height)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(packed_latent_width)[None, :]
img_ids = einops.repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
return img_ids
def unpack_latents(x: torch.Tensor, packed_latent_height: int, packed_latent_width: int) -> torch.Tensor:
"""
x: [b (h w) (c ph pw)] -> [b c (h ph) (w pw)], ph=2, pw=2
"""
x = einops.rearrange(x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=packed_latent_height, w=packed_latent_width, ph=2, pw=2)
return x
def pack_latents(x: torch.Tensor) -> torch.Tensor:
"""
x: [b c (h ph) (w pw)] -> [b (h w) (c ph pw)], ph=2, pw=2
"""
x = einops.rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
return x
# region Diffusers
NUM_DOUBLE_BLOCKS = 19
NUM_SINGLE_BLOCKS = 38
BFL_TO_DIFFUSERS_MAP = {
"time_in.in_layer.weight": ["time_text_embed.timestep_embedder.linear_1.weight"],
"time_in.in_layer.bias": ["time_text_embed.timestep_embedder.linear_1.bias"],
"time_in.out_layer.weight": ["time_text_embed.timestep_embedder.linear_2.weight"],
"time_in.out_layer.bias": ["time_text_embed.timestep_embedder.linear_2.bias"],
"vector_in.in_layer.weight": ["time_text_embed.text_embedder.linear_1.weight"],
"vector_in.in_layer.bias": ["time_text_embed.text_embedder.linear_1.bias"],
"vector_in.out_layer.weight": ["time_text_embed.text_embedder.linear_2.weight"],
"vector_in.out_layer.bias": ["time_text_embed.text_embedder.linear_2.bias"],
"guidance_in.in_layer.weight": ["time_text_embed.guidance_embedder.linear_1.weight"],
"guidance_in.in_layer.bias": ["time_text_embed.guidance_embedder.linear_1.bias"],
"guidance_in.out_layer.weight": ["time_text_embed.guidance_embedder.linear_2.weight"],
"guidance_in.out_layer.bias": ["time_text_embed.guidance_embedder.linear_2.bias"],
"txt_in.weight": ["context_embedder.weight"],
"txt_in.bias": ["context_embedder.bias"],
"img_in.weight": ["x_embedder.weight"],
"img_in.bias": ["x_embedder.bias"],
"double_blocks.().img_mod.lin.weight": ["norm1.linear.weight"],
"double_blocks.().img_mod.lin.bias": ["norm1.linear.bias"],
"double_blocks.().txt_mod.lin.weight": ["norm1_context.linear.weight"],
"double_blocks.().txt_mod.lin.bias": ["norm1_context.linear.bias"],
"double_blocks.().img_attn.qkv.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight"],
"double_blocks.().img_attn.qkv.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias"],
"double_blocks.().txt_attn.qkv.weight": ["attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight"],
"double_blocks.().txt_attn.qkv.bias": ["attn.add_q_proj.bias", "attn.add_k_proj.bias", "attn.add_v_proj.bias"],
"double_blocks.().img_attn.norm.query_norm.scale": ["attn.norm_q.weight"],
"double_blocks.().img_attn.norm.key_norm.scale": ["attn.norm_k.weight"],
"double_blocks.().txt_attn.norm.query_norm.scale": ["attn.norm_added_q.weight"],
"double_blocks.().txt_attn.norm.key_norm.scale": ["attn.norm_added_k.weight"],
"double_blocks.().img_mlp.0.weight": ["ff.net.0.proj.weight"],
"double_blocks.().img_mlp.0.bias": ["ff.net.0.proj.bias"],
"double_blocks.().img_mlp.2.weight": ["ff.net.2.weight"],
"double_blocks.().img_mlp.2.bias": ["ff.net.2.bias"],
"double_blocks.().txt_mlp.0.weight": ["ff_context.net.0.proj.weight"],
"double_blocks.().txt_mlp.0.bias": ["ff_context.net.0.proj.bias"],
"double_blocks.().txt_mlp.2.weight": ["ff_context.net.2.weight"],
"double_blocks.().txt_mlp.2.bias": ["ff_context.net.2.bias"],
"double_blocks.().img_attn.proj.weight": ["attn.to_out.0.weight"],
"double_blocks.().img_attn.proj.bias": ["attn.to_out.0.bias"],
"double_blocks.().txt_attn.proj.weight": ["attn.to_add_out.weight"],
"double_blocks.().txt_attn.proj.bias": ["attn.to_add_out.bias"],
"single_blocks.().modulation.lin.weight": ["norm.linear.weight"],
"single_blocks.().modulation.lin.bias": ["norm.linear.bias"],
"single_blocks.().linear1.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight"],
"single_blocks.().linear1.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", "proj_mlp.bias"],
"single_blocks.().linear2.weight": ["proj_out.weight"],
"single_blocks.().norm.query_norm.scale": ["attn.norm_q.weight"],
"single_blocks.().norm.key_norm.scale": ["attn.norm_k.weight"],
"single_blocks.().linear2.weight": ["proj_out.weight"],
"single_blocks.().linear2.bias": ["proj_out.bias"],
"final_layer.linear.weight": ["proj_out.weight"],
"final_layer.linear.bias": ["proj_out.bias"],
"final_layer.adaLN_modulation.1.weight": ["norm_out.linear.weight"],
"final_layer.adaLN_modulation.1.bias": ["norm_out.linear.bias"],
}
def make_diffusers_to_bfl_map(num_double_blocks: int, num_single_blocks: int) -> dict[str, tuple[int, str]]:
# make reverse map from diffusers map
diffusers_to_bfl_map = {} # key: diffusers_key, value: (index, bfl_key)
for b in range(num_double_blocks):
for key, weights in BFL_TO_DIFFUSERS_MAP.items():
if key.startswith("double_blocks."):
block_prefix = f"transformer_blocks.{b}."
for i, weight in enumerate(weights):
diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}"))
for b in range(num_single_blocks):
for key, weights in BFL_TO_DIFFUSERS_MAP.items():
if key.startswith("single_blocks."):
block_prefix = f"single_transformer_blocks.{b}."
for i, weight in enumerate(weights):
diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}"))
for key, weights in BFL_TO_DIFFUSERS_MAP.items():
if not (key.startswith("double_blocks.") or key.startswith("single_blocks.")):
for i, weight in enumerate(weights):
diffusers_to_bfl_map[weight] = (i, key)
return diffusers_to_bfl_map
def convert_diffusers_sd_to_bfl(
diffusers_sd: dict[str, torch.Tensor], num_double_blocks: int = NUM_DOUBLE_BLOCKS, num_single_blocks: int = NUM_SINGLE_BLOCKS
) -> dict[str, torch.Tensor]:
diffusers_to_bfl_map = make_diffusers_to_bfl_map(num_double_blocks, num_single_blocks)
# iterate over three safetensors files to reduce memory usage
flux_sd = {}
for diffusers_key, tensor in diffusers_sd.items():
if diffusers_key in diffusers_to_bfl_map:
index, bfl_key = diffusers_to_bfl_map[diffusers_key]
if bfl_key not in flux_sd:
flux_sd[bfl_key] = []
flux_sd[bfl_key].append((index, tensor))
else:
logger.error(f"Error: Key not found in diffusers_to_bfl_map: {diffusers_key}")
raise KeyError(f"Key not found in diffusers_to_bfl_map: {diffusers_key}")
# concat tensors if multiple tensors are mapped to a single key, sort by index
for key, values in flux_sd.items():
if len(values) == 1:
flux_sd[key] = values[0][1]
else:
flux_sd[key] = torch.cat([value[1] for value in sorted(values, key=lambda x: x[0])])
# special case for final_layer.adaLN_modulation.1.weight and final_layer.adaLN_modulation.1.bias
def swap_scale_shift(weight):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
if "final_layer.adaLN_modulation.1.weight" in flux_sd:
flux_sd["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.weight"])
if "final_layer.adaLN_modulation.1.bias" in flux_sd:
flux_sd["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.bias"])
return flux_sd
# endregion
|