Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import os | |
import random | |
from tqdm import tqdm | |
from torch.utils.data import Dataset | |
from pycocotools.coco import COCO | |
from pycocotools import mask as maskUtils | |
from PIL import Image | |
import cv2 | |
import random | |
from torchvision import transforms | |
from tqdm import tqdm | |
import pickle | |
import torch | |
import numpy as np | |
import copy | |
import sys | |
import shutil | |
from PIL import Image | |
from nltk.corpus import wordnet | |
PIXEL_MEAN = (0.48145466, 0.4578275, 0.40821073) | |
MASK_FILL = [int(255 * c) for c in PIXEL_MEAN] | |
clip_standard_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((224, 224), interpolation=Image.BICUBIC), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | |
]) | |
hi_clip_standard_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((336, 336), interpolation=Image.BICUBIC), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | |
]) | |
res_clip_standard_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((336, 336), interpolation=Image.BICUBIC), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | |
]) | |
mask_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((224, 224)), | |
transforms.Normalize(0.5, 0.26) | |
]) | |
hi_mask_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((336, 336)), | |
transforms.Normalize(0.5, 0.26) | |
]) | |
res_mask_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((336, 336)), | |
transforms.Normalize(0.5, 0.26) | |
]) | |
def crop_center(img, croph, cropw): | |
h, w = img.shape[:2] | |
starth = h//2 - (croph//2) | |
startw = w//2 - (cropw//2) | |
return img[starth:starth+croph, startw:startw+cropw, :] | |
class Imagenet_S(Dataset): | |
def __init__(self, ann_file='data/imagenet_919.json', hi_res=False, all_one=False): | |
self.anns = json.load(open(ann_file, 'r')) | |
self.root_pth = 'data/' | |
cats = [] | |
for ann in self.anns: | |
if ann['category_word'] not in cats: | |
cats.append(ann['category_word']) | |
ann['cat_index'] = len(cats) - 1 | |
self.classes = [] | |
for cat_word in cats: | |
synset = wordnet.synset_from_pos_and_offset('n', int(cat_word[1:])) | |
synonyms = [x.name() for x in synset.lemmas()] | |
self.classes.append(synonyms[0]) | |
self.choice = "center_crop" | |
if hi_res: | |
self.mask_transform = res_mask_transform | |
self.clip_standard_transform = res_clip_standard_transform | |
else: | |
self.mask_transform = mask_transform | |
self.clip_standard_transform = clip_standard_transform | |
self.all_one = all_one | |
def __len__(self): | |
return len(self.anns) | |
def __getitem__(self, index): | |
ann = self.anns[index] | |
image = cv2.imread(os.path.join(self.root_pth, ann['image_pth'])) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
mask = maskUtils.decode(ann['mask']) | |
# image[mask==0] = MASK_FILL | |
rgba = np.concatenate((image, np.expand_dims(mask, axis=-1)), axis=-1) | |
h, w = rgba.shape[:2] | |
if self.choice == "padding": | |
if max(h, w) == w: | |
pad = (w - h) // 2 | |
l, r = pad, w - h - pad | |
rgba = np.pad(rgba, ((l, r), (0, 0), (0, 0)), 'constant', constant_values=0) | |
else: | |
pad = (h - w) // 2 | |
l, r = pad, h - w - pad | |
rgba = np.pad(rgba, ((0, 0), (l, r), (0, 0)), 'constant', constant_values=0) | |
else: | |
if min(h, w) == h: | |
rgba = crop_center(rgba, h, h) | |
else: | |
rgba = crop_center(rgba, w, w) | |
rgb = rgba[:, :, :-1] | |
mask = rgba[:, :, -1] | |
image_torch = self.clip_standard_transform(rgb) | |
# using box: bounding-box compute | |
# bi_mask = mask == 1 | |
# h, w = bi_mask.shape[-2:] | |
# in_height = np.max(bi_mask, axis=-1) | |
# in_height_coords = np.max(bi_mask, axis=-1) * np.arange(h) | |
# b_e = in_height_coords.max() | |
# in_height_coords = in_height_coords + h * (~in_height) | |
# t_e = in_height_coords.min() | |
# in_width = np.max(bi_mask, axis=-2) | |
# in_width_coords = np.max(bi_mask, axis=-2) * np.arange(w) | |
# r_e = in_width_coords.max() | |
# in_width_coords = in_width_coords + w * (~in_width) | |
# l_e = in_width_coords.min() | |
# box = np.zeros_like(mask) | |
# box[t_e: b_e, l_e:r_e] = 1 | |
# mask = box | |
if self.all_one: | |
mask_torch = self.mask_transform(np.ones_like(mask) * 255) | |
else: | |
mask_torch = self.mask_transform(mask * 255) | |
return image_torch, mask_torch, ann['cat_index'] | |
if __name__ == "__main__": | |
data = Imagenet_S() | |
for i in tqdm(range(data.__len__())): | |
data.__getitem__(i) |