import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import numpy as np import time # net_stride output_size # 128 2x2 # 64 4x4 # 32 8x8 # pip regression, resnet18, for GSSL class Pip_resnet18(nn.Module): def __init__(self, resnet, num_nb, num_lms=68, input_size=256, net_stride=32): super(Pip_resnet18, self).__init__() self.num_nb = num_nb self.num_lms = num_lms self.input_size = input_size self.net_stride = net_stride self.conv1 = resnet.conv1 self.bn1 = resnet.bn1 self.maxpool = resnet.maxpool self.sigmoid = nn.Sigmoid() self.layer1 = resnet.layer1 self.layer2 = resnet.layer2 self.layer3 = resnet.layer3 self.layer4 = resnet.layer4 self.my_maxpool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.cls_layer = nn.Conv2d(512, num_lms, kernel_size=1, stride=1, padding=0) self.x_layer = nn.Conv2d(512, num_lms, kernel_size=1, stride=1, padding=0) self.y_layer = nn.Conv2d(512, num_lms, kernel_size=1, stride=1, padding=0) self.nb_x_layer = nn.Conv2d(512, num_nb*num_lms, kernel_size=1, stride=1, padding=0) self.nb_y_layer = nn.Conv2d(512, num_nb*num_lms, kernel_size=1, stride=1, padding=0) # init nn.init.normal_(self.cls_layer.weight, std=0.001) if self.cls_layer.bias is not None: nn.init.constant_(self.cls_layer.bias, 0) nn.init.normal_(self.x_layer.weight, std=0.001) if self.x_layer.bias is not None: nn.init.constant_(self.x_layer.bias, 0) nn.init.normal_(self.y_layer.weight, std=0.001) if self.y_layer.bias is not None: nn.init.constant_(self.y_layer.bias, 0) nn.init.normal_(self.nb_x_layer.weight, std=0.001) if self.nb_x_layer.bias is not None: nn.init.constant_(self.nb_x_layer.bias, 0) nn.init.normal_(self.nb_y_layer.weight, std=0.001) if self.nb_y_layer.bias is not None: nn.init.constant_(self.nb_y_layer.bias, 0) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) cls1 = self.cls_layer(x) offset_x = self.x_layer(x) offset_y = self.y_layer(x) nb_x = self.nb_x_layer(x) nb_y = self.nb_y_layer(x) x = self.my_maxpool(x) cls2 = self.cls_layer(x) x = self.my_maxpool(x) cls3 = self.cls_layer(x) return cls1, cls2, cls3, offset_x, offset_y, nb_x, nb_y if __name__ == '__main__': pass