# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import numpy as np cimport numpy as np cdef inline np.float32_t max(np.float32_t a, np.float32_t b): return a if a >= b else b cdef inline np.float32_t min(np.float32_t a, np.float32_t b): return a if a <= b else b def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh): cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0] cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1] cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2] cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3] cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4] cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1) cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1] cdef int ndets = dets.shape[0] cdef np.ndarray[np.int_t, ndim=1] suppressed = np.zeros((ndets), dtype=int) # nominal indices cdef int _i, _j # sorted indices cdef int i, j # temp variables for box i's (the box currently under consideration) cdef np.float32_t ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) cdef np.float32_t xx1, yy1, xx2, yy2 cdef np.float32_t w, h cdef np.float32_t inter, ovr keep = [] for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue keep.append(i) ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 return keep def cpu_soft_nms(np.ndarray[float, ndim=2] boxes, float sigma=0.5, float Nt=0.3, float threshold=0.001, unsigned int method=0): cdef unsigned int N = boxes.shape[0] cdef float iw, ih, box_area cdef float ua cdef int pos = 0 cdef float maxscore = 0 cdef int maxpos = 0 cdef float x1,x2,y1,y2,tx1,tx2,ty1,ty2,ts,area,weight,ov for i in range(N): maxscore = boxes[i, 4] maxpos = i tx1 = boxes[i,0] ty1 = boxes[i,1] tx2 = boxes[i,2] ty2 = boxes[i,3] ts = boxes[i,4] pos = i + 1 # get max box while pos < N: if maxscore < boxes[pos, 4]: maxscore = boxes[pos, 4] maxpos = pos pos = pos + 1 # add max box as a detection boxes[i,0] = boxes[maxpos,0] boxes[i,1] = boxes[maxpos,1] boxes[i,2] = boxes[maxpos,2] boxes[i,3] = boxes[maxpos,3] boxes[i,4] = boxes[maxpos,4] # swap ith box with position of max box boxes[maxpos,0] = tx1 boxes[maxpos,1] = ty1 boxes[maxpos,2] = tx2 boxes[maxpos,3] = ty2 boxes[maxpos,4] = ts tx1 = boxes[i,0] ty1 = boxes[i,1] tx2 = boxes[i,2] ty2 = boxes[i,3] ts = boxes[i,4] pos = i + 1 # NMS iterations, note that N changes if detection boxes fall below threshold while pos < N: x1 = boxes[pos, 0] y1 = boxes[pos, 1] x2 = boxes[pos, 2] y2 = boxes[pos, 3] s = boxes[pos, 4] area = (x2 - x1 + 1) * (y2 - y1 + 1) iw = (min(tx2, x2) - max(tx1, x1) + 1) if iw > 0: ih = (min(ty2, y2) - max(ty1, y1) + 1) if ih > 0: ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih) ov = iw * ih / ua #iou between max box and detection box if method == 1: # linear if ov > Nt: weight = 1 - ov else: weight = 1 elif method == 2: # gaussian weight = np.exp(-(ov * ov)/sigma) else: # original NMS if ov > Nt: weight = 0 else: weight = 1 boxes[pos, 4] = weight*boxes[pos, 4] # if box score falls below threshold, discard the box by swapping with last box # update N if boxes[pos, 4] < threshold: boxes[pos,0] = boxes[N-1, 0] boxes[pos,1] = boxes[N-1, 1] boxes[pos,2] = boxes[N-1, 2] boxes[pos,3] = boxes[N-1, 3] boxes[pos,4] = boxes[N-1, 4] N = N - 1 pos = pos - 1 pos = pos + 1 keep = [i for i in range(N)] return keep