import torch import torch.nn as nn import timm from modules.layers.simswap.pg_modules.blocks import FeatureFusionBlock def _make_scratch_ccm(scratch, in_channels, cout, expand=False): # shapes out_channels = [cout, cout*2, cout*4, cout*8] if expand else [cout]*4 scratch.layer0_ccm = nn.Conv2d(in_channels[0], out_channels[0], kernel_size=1, stride=1, padding=0, bias=True) scratch.layer1_ccm = nn.Conv2d(in_channels[1], out_channels[1], kernel_size=1, stride=1, padding=0, bias=True) scratch.layer2_ccm = nn.Conv2d(in_channels[2], out_channels[2], kernel_size=1, stride=1, padding=0, bias=True) scratch.layer3_ccm = nn.Conv2d(in_channels[3], out_channels[3], kernel_size=1, stride=1, padding=0, bias=True) scratch.CHANNELS = out_channels return scratch def _make_scratch_csm(scratch, in_channels, cout, expand): scratch.layer3_csm = FeatureFusionBlock(in_channels[3], nn.ReLU(False), expand=expand, lowest=True) scratch.layer2_csm = FeatureFusionBlock(in_channels[2], nn.ReLU(False), expand=expand) scratch.layer1_csm = FeatureFusionBlock(in_channels[1], nn.ReLU(False), expand=expand) scratch.layer0_csm = FeatureFusionBlock(in_channels[0], nn.ReLU(False)) # last refinenet does not expand to save channels in higher dimensions scratch.CHANNELS = [cout, cout, cout*2, cout*4] if expand else [cout]*4 return scratch def _make_efficientnet(model): pretrained = nn.Module() pretrained.layer0 = nn.Sequential(model.conv_stem, model.bn1, model.act1, *model.blocks[0:2]) pretrained.layer1 = nn.Sequential(*model.blocks[2:3]) pretrained.layer2 = nn.Sequential(*model.blocks[3:5]) pretrained.layer3 = nn.Sequential(*model.blocks[5:9]) return pretrained def calc_channels(pretrained, inp_res=224): channels = [] tmp = torch.zeros(1, 3, inp_res, inp_res) # forward pass tmp = pretrained.layer0(tmp) channels.append(tmp.shape[1]) tmp = pretrained.layer1(tmp) channels.append(tmp.shape[1]) tmp = pretrained.layer2(tmp) channels.append(tmp.shape[1]) tmp = pretrained.layer3(tmp) channels.append(tmp.shape[1]) return channels def _make_projector(im_res, cout, proj_type, expand=False): assert proj_type in [0, 1, 2], "Invalid projection type" ### Build pretrained feature network model = timm.create_model('tf_efficientnet_lite0', pretrained=False, checkpoint_path='/gavin/code/FaceSwapping/modules/third_party/efficientnet/' 'tf_efficientnet_lite0-0aa007d2.pth') pretrained = _make_efficientnet(model) # determine resolution of feature maps, this is later used to calculate the number # of down blocks in the discriminators. Interestingly, the best results are achieved # by fixing this to 256, ie., we use the same number of down blocks per discriminator # independent of the dataset resolution im_res = 256 pretrained.RESOLUTIONS = [im_res//4, im_res//8, im_res//16, im_res//32] pretrained.CHANNELS = calc_channels(pretrained) if proj_type == 0: return pretrained, None ### Build CCM scratch = nn.Module() scratch = _make_scratch_ccm(scratch, in_channels=pretrained.CHANNELS, cout=cout, expand=expand) pretrained.CHANNELS = scratch.CHANNELS if proj_type == 1: return pretrained, scratch ### build CSM scratch = _make_scratch_csm(scratch, in_channels=scratch.CHANNELS, cout=cout, expand=expand) # CSM upsamples x2 so the feature map resolution doubles pretrained.RESOLUTIONS = [res*2 for res in pretrained.RESOLUTIONS] pretrained.CHANNELS = scratch.CHANNELS return pretrained, scratch class F_RandomProj(nn.Module): def __init__( self, im_res=256, cout=64, expand=True, proj_type=2, # 0 = no projection, 1 = cross channel mixing, 2 = cross scale mixing **kwargs, ): super().__init__() self.proj_type = proj_type self.cout = cout self.expand = expand # build pretrained feature network and random decoder (scratch) self.pretrained, self.scratch = _make_projector(im_res=im_res, cout=self.cout, proj_type=self.proj_type, expand=self.expand) self.CHANNELS = self.pretrained.CHANNELS self.RESOLUTIONS = self.pretrained.RESOLUTIONS def forward(self, x, get_features=False): # predict feature maps out0 = self.pretrained.layer0(x) out1 = self.pretrained.layer1(out0) out2 = self.pretrained.layer2(out1) out3 = self.pretrained.layer3(out2) # start enumerating at the lowest layer (this is where we put the first discriminator) backbone_features = { '0': out0, '1': out1, '2': out2, '3': out3, } if get_features: return backbone_features if self.proj_type == 0: return backbone_features out0_channel_mixed = self.scratch.layer0_ccm(backbone_features['0']) out1_channel_mixed = self.scratch.layer1_ccm(backbone_features['1']) out2_channel_mixed = self.scratch.layer2_ccm(backbone_features['2']) out3_channel_mixed = self.scratch.layer3_ccm(backbone_features['3']) out = { '0': out0_channel_mixed, '1': out1_channel_mixed, '2': out2_channel_mixed, '3': out3_channel_mixed, } if self.proj_type == 1: return out # from bottom to top out3_scale_mixed = self.scratch.layer3_csm(out3_channel_mixed) out2_scale_mixed = self.scratch.layer2_csm(out3_scale_mixed, out2_channel_mixed) out1_scale_mixed = self.scratch.layer1_csm(out2_scale_mixed, out1_channel_mixed) out0_scale_mixed = self.scratch.layer0_csm(out1_scale_mixed, out0_channel_mixed) out = { '0': out0_scale_mixed, '1': out1_scale_mixed, '2': out2_scale_mixed, '3': out3_scale_mixed, } return out, backbone_features