Spaces:
Running
Running
import os, cv2 | |
import hdf5storage | |
import numpy as np | |
import sys | |
def process_300w(root_folder, folder_name, image_name, label_name, target_size): | |
image_path = os.path.join(root_folder, folder_name, image_name) | |
label_path = os.path.join(root_folder, folder_name, label_name) | |
with open(label_path, 'r') as ff: | |
anno = ff.readlines()[3:-1] | |
anno = [x.strip().split() for x in anno] | |
anno = [[int(float(x[0])), int(float(x[1]))] for x in anno] | |
image = cv2.imread(image_path) | |
image_height, image_width, _ = image.shape | |
anno_x = [x[0] for x in anno] | |
anno_y = [x[1] for x in anno] | |
bbox_xmin = min(anno_x) | |
bbox_ymin = min(anno_y) | |
bbox_xmax = max(anno_x) | |
bbox_ymax = max(anno_y) | |
bbox_width = bbox_xmax - bbox_xmin | |
bbox_height = bbox_ymax - bbox_ymin | |
scale = 1.3 | |
bbox_xmin -= int((scale-1)/2*bbox_width) | |
bbox_ymin -= int((scale-1)/2*bbox_height) | |
bbox_width *= scale | |
bbox_height *= scale | |
bbox_width = int(bbox_width) | |
bbox_height = int(bbox_height) | |
bbox_xmin = max(bbox_xmin, 0) | |
bbox_ymin = max(bbox_ymin, 0) | |
bbox_width = min(bbox_width, image_width-bbox_xmin-1) | |
bbox_height = min(bbox_height, image_height-bbox_ymin-1) | |
anno = [[(x-bbox_xmin)/bbox_width, (y-bbox_ymin)/bbox_height] for x,y in anno] | |
bbox_xmax = bbox_xmin + bbox_width | |
bbox_ymax = bbox_ymin + bbox_height | |
image_crop = image[bbox_ymin:bbox_ymax, bbox_xmin:bbox_xmax, :] | |
image_crop = cv2.resize(image_crop, (target_size, target_size)) | |
return image_crop, anno | |
def process_wflw(anno, target_size): | |
image_name = anno[-1] | |
image_path = os.path.join('..', 'data', 'WFLW', 'WFLW_images', image_name) | |
image = cv2.imread(image_path) | |
image_height, image_width, _ = image.shape | |
lms = anno[:196] | |
lms = [float(x) for x in lms] | |
lms_x = lms[0::2] | |
lms_y = lms[1::2] | |
lms_x = [x if x >=0 else 0 for x in lms_x] | |
lms_x = [x if x <=image_width else image_width for x in lms_x] | |
lms_y = [y if y >=0 else 0 for y in lms_y] | |
lms_y = [y if y <=image_height else image_height for y in lms_y] | |
lms = [[x,y] for x,y in zip(lms_x, lms_y)] | |
lms = [x for z in lms for x in z] | |
bbox = anno[196:200] | |
bbox = [float(x) for x in bbox] | |
attrs = anno[200:206] | |
attrs = np.array([int(x) for x in attrs]) | |
bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax = bbox | |
width = bbox_xmax - bbox_xmin | |
height = bbox_ymax - bbox_ymin | |
scale = 1.2 | |
bbox_xmin -= width * (scale-1)/2 | |
# remove a part of top area for alignment, see details in paper | |
bbox_ymin += height * (scale-1)/2 | |
bbox_xmax += width * (scale-1)/2 | |
bbox_ymax += height * (scale-1)/2 | |
bbox_xmin = max(bbox_xmin, 0) | |
bbox_ymin = max(bbox_ymin, 0) | |
bbox_xmax = min(bbox_xmax, image_width-1) | |
bbox_ymax = min(bbox_ymax, image_height-1) | |
width = bbox_xmax - bbox_xmin | |
height = bbox_ymax - bbox_ymin | |
image_crop = image[int(bbox_ymin):int(bbox_ymax), int(bbox_xmin):int(bbox_xmax), :] | |
image_crop = cv2.resize(image_crop, (target_size, target_size)) | |
tmp1 = [bbox_xmin, bbox_ymin]*98 | |
tmp1 = np.array(tmp1) | |
tmp2 = [width, height]*98 | |
tmp2 = np.array(tmp2) | |
lms = np.array(lms) - tmp1 | |
lms = lms / tmp2 | |
lms = lms.tolist() | |
lms = zip(lms[0::2], lms[1::2]) | |
return image_crop, list(lms) | |
def process_celeba(root_folder, image_name, bbox, target_size): | |
image = cv2.imread(os.path.join(root_folder, 'CELEBA', 'img_celeba', image_name)) | |
image_height, image_width, _ = image.shape | |
xmin, ymin, xmax, ymax = bbox | |
width = xmax - xmin + 1 | |
height = ymax - ymin + 1 | |
scale = 1.2 | |
xmin -= width * (scale-1)/2 | |
# remove a part of top area for alignment, see details in paper | |
ymin += height * (scale+0.1-1)/2 | |
xmax += width * (scale-1)/2 | |
ymax += height * (scale-1)/2 | |
xmin = max(xmin, 0) | |
ymin = max(ymin, 0) | |
xmax = min(xmax, image_width-1) | |
ymax = min(ymax, image_height-1) | |
image_crop = image[int(ymin):int(ymax), int(xmin):int(xmax), :] | |
image_crop = cv2.resize(image_crop, (target_size, target_size)) | |
return image_crop | |
def process_cofw_68_train(image, bbox, anno, target_size): | |
image_height, image_width, _ = image.shape | |
anno_x = anno[:29] | |
anno_y = anno[29:58] | |
xmin, ymin, width, height = bbox | |
xmax = xmin + width -1 | |
ymax = ymin + height -1 | |
scale = 1.3 | |
xmin -= width * (scale-1)/2 | |
ymin -= height * (scale-1)/2 | |
xmax += width * (scale-1)/2 | |
ymax += height * (scale-1)/2 | |
xmin = max(xmin, 0) | |
ymin = max(ymin, 0) | |
xmax = min(xmax, image_width-1) | |
ymax = min(ymax, image_height-1) | |
anno_x = (anno_x - xmin) / (xmax - xmin) | |
anno_y = (anno_y - ymin) / (ymax - ymin) | |
anno = np.concatenate([anno_x.reshape(-1,1), anno_y.reshape(-1,1)], axis=1) | |
anno = list(anno) | |
anno = [list(x) for x in anno] | |
image_crop = image[int(ymin):int(ymax), int(xmin):int(xmax), :] | |
image_crop = cv2.resize(image_crop, (target_size, target_size)) | |
return image_crop, anno | |
def process_cofw_68_test(image, bbox, anno, target_size): | |
image_height, image_width, _ = image.shape | |
anno_x = anno[:,0].flatten() | |
anno_y = anno[:,1].flatten() | |
xmin, ymin, width, height = bbox | |
xmax = xmin + width -1 | |
ymax = ymin + height -1 | |
scale = 1.3 | |
xmin -= width * (scale-1)/2 | |
ymin -= height * (scale-1)/2 | |
xmax += width * (scale-1)/2 | |
ymax += height * (scale-1)/2 | |
xmin = max(xmin, 0) | |
ymin = max(ymin, 0) | |
xmax = min(xmax, image_width-1) | |
ymax = min(ymax, image_height-1) | |
anno_x = (anno_x - xmin) / (xmax - xmin) | |
anno_y = (anno_y - ymin) / (ymax - ymin) | |
anno = np.concatenate([anno_x.reshape(-1,1), anno_y.reshape(-1,1)], axis=1) | |
anno = list(anno) | |
anno = [list(x) for x in anno] | |
image_crop = image[int(ymin):int(ymax), int(xmin):int(xmax), :] | |
image_crop = cv2.resize(image_crop, (target_size, target_size)) | |
return image_crop, anno | |
def gen_meanface(root_folder, data_name): | |
with open(os.path.join(root_folder, data_name, 'train_300W.txt'), 'r') as f: | |
annos = f.readlines() | |
annos = [x.strip().split()[1:] for x in annos] | |
annos = [[float(x) for x in anno] for anno in annos] | |
annos = np.array(annos) | |
meanface = np.mean(annos, axis=0) | |
meanface = meanface.tolist() | |
meanface = [str(x) for x in meanface] | |
with open(os.path.join(root_folder, data_name, 'meanface.txt'), 'w') as f: | |
f.write(' '.join(meanface)) | |
def convert_wflw(root_folder, data_name): | |
with open(os.path.join(root_folder, data_name, 'test_WFLW_98.txt'), 'r') as f: | |
annos = f.readlines() | |
annos = [x.strip().split() for x in annos] | |
annos_new = [] | |
for anno in annos: | |
annos_new.append([]) | |
# name | |
annos_new[-1].append(anno[0]) | |
anno = anno[1:] | |
# jaw | |
for i in range(17): | |
annos_new[-1].append(anno[i*2*2]) | |
annos_new[-1].append(anno[i*2*2+1]) | |
# left eyebrow | |
annos_new[-1].append(anno[33*2]) | |
annos_new[-1].append(anno[33*2+1]) | |
annos_new[-1].append(anno[34*2]) | |
annos_new[-1].append(str((float(anno[34*2+1])+float(anno[41*2+1]))/2)) | |
annos_new[-1].append(anno[35*2]) | |
annos_new[-1].append(str((float(anno[35*2+1])+float(anno[40*2+1]))/2)) | |
annos_new[-1].append(anno[36*2]) | |
annos_new[-1].append(str((float(anno[36*2+1])+float(anno[39*2+1]))/2)) | |
annos_new[-1].append(anno[37*2]) | |
annos_new[-1].append(str((float(anno[37*2+1])+float(anno[38*2+1]))/2)) | |
# right eyebrow | |
annos_new[-1].append(anno[42*2]) | |
annos_new[-1].append(str((float(anno[42*2+1])+float(anno[50*2+1]))/2)) | |
annos_new[-1].append(anno[43*2]) | |
annos_new[-1].append(str((float(anno[43*2+1])+float(anno[49*2+1]))/2)) | |
annos_new[-1].append(anno[44*2]) | |
annos_new[-1].append(str((float(anno[44*2+1])+float(anno[48*2+1]))/2)) | |
annos_new[-1].append(anno[45*2]) | |
annos_new[-1].append(str((float(anno[45*2+1])+float(anno[47*2+1]))/2)) | |
annos_new[-1].append(anno[46*2]) | |
annos_new[-1].append(anno[46*2+1]) | |
# nose | |
for i in range(51, 60): | |
annos_new[-1].append(anno[i*2]) | |
annos_new[-1].append(anno[i*2+1]) | |
# left eye | |
annos_new[-1].append(anno[60*2]) | |
annos_new[-1].append(anno[60*2+1]) | |
annos_new[-1].append(str(0.666*float(anno[61*2])+0.333*float(anno[62*2]))) | |
annos_new[-1].append(str(0.666*float(anno[61*2+1])+0.333*float(anno[62*2+1]))) | |
annos_new[-1].append(str(0.666*float(anno[63*2])+0.333*float(anno[62*2]))) | |
annos_new[-1].append(str(0.666*float(anno[63*2+1])+0.333*float(anno[62*2+1]))) | |
annos_new[-1].append(anno[64*2]) | |
annos_new[-1].append(anno[64*2+1]) | |
annos_new[-1].append(str(0.666*float(anno[65*2])+0.333*float(anno[66*2]))) | |
annos_new[-1].append(str(0.666*float(anno[65*2+1])+0.333*float(anno[66*2+1]))) | |
annos_new[-1].append(str(0.666*float(anno[67*2])+0.333*float(anno[66*2]))) | |
annos_new[-1].append(str(0.666*float(anno[67*2+1])+0.333*float(anno[66*2+1]))) | |
# right eye | |
annos_new[-1].append(anno[68*2]) | |
annos_new[-1].append(anno[68*2+1]) | |
annos_new[-1].append(str(0.666*float(anno[69*2])+0.333*float(anno[70*2]))) | |
annos_new[-1].append(str(0.666*float(anno[69*2+1])+0.333*float(anno[70*2+1]))) | |
annos_new[-1].append(str(0.666*float(anno[71*2])+0.333*float(anno[70*2]))) | |
annos_new[-1].append(str(0.666*float(anno[71*2+1])+0.333*float(anno[70*2+1]))) | |
annos_new[-1].append(anno[72*2]) | |
annos_new[-1].append(anno[72*2+1]) | |
annos_new[-1].append(str(0.666*float(anno[73*2])+0.333*float(anno[74*2]))) | |
annos_new[-1].append(str(0.666*float(anno[73*2+1])+0.333*float(anno[74*2+1]))) | |
annos_new[-1].append(str(0.666*float(anno[75*2])+0.333*float(anno[74*2]))) | |
annos_new[-1].append(str(0.666*float(anno[75*2+1])+0.333*float(anno[74*2+1]))) | |
# mouth | |
for i in range(76, 96): | |
annos_new[-1].append(anno[i*2]) | |
annos_new[-1].append(anno[i*2+1]) | |
with open(os.path.join(root_folder, data_name, 'test_WFLW.txt'), 'w') as f: | |
for anno in annos_new: | |
f.write(' '.join(anno)+'\n') | |
def gen_data(root_folder, data_name, target_size): | |
if not os.path.exists(os.path.join(root_folder, data_name, 'images_train')): | |
os.mkdir(os.path.join(root_folder, data_name, 'images_train')) | |
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test')): | |
os.mkdir(os.path.join(root_folder, data_name, 'images_test')) | |
################################################################################################################ | |
if data_name == 'CELEBA': | |
os.system('rmdir ../data/CELEBA/images_test') | |
with open(os.path.join(root_folder, data_name, 'celeba_bboxes.txt'), 'r') as f: | |
bboxes = f.readlines() | |
bboxes = [x.strip().split() for x in bboxes] | |
with open(os.path.join(root_folder, data_name, 'train.txt'), 'w') as f: | |
for bbox in bboxes: | |
image_name = bbox[0] | |
print(image_name) | |
f.write(image_name+'\n') | |
bbox = bbox[1:] | |
bbox = [int(x) for x in bbox] | |
image_crop = process_celeba(root_folder, image_name, bbox, target_size) | |
cv2.imwrite(os.path.join(root_folder, data_name, 'images_train', image_name), image_crop) | |
################################################################################################################ | |
elif data_name == 'data_300W_CELEBA': | |
os.system('cp -r ../data/CELEBA/images_train ../data/data_300W_CELEBA/.') | |
os.system('cp ../data/CELEBA/train.txt ../data/data_300W_CELEBA/train_CELEBA.txt') | |
os.system('rmdir ../data/data_300W_CELEBA/images_test') | |
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_300W')): | |
os.mkdir(os.path.join(root_folder, data_name, 'images_test_300W')) | |
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_COFW')): | |
os.mkdir(os.path.join(root_folder, data_name, 'images_test_COFW')) | |
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_WFLW')): | |
os.mkdir(os.path.join(root_folder, data_name, 'images_test_WFLW')) | |
# train for data_300W | |
folders_train = ['afw', 'helen/trainset', 'lfpw/trainset'] | |
annos_train = {} | |
for folder_train in folders_train: | |
all_files = sorted(os.listdir(os.path.join(root_folder, 'data_300W', folder_train))) | |
image_files = [x for x in all_files if '.pts' not in x] | |
label_files = [x for x in all_files if '.pts' in x] | |
assert len(image_files) == len(label_files) | |
for image_name, label_name in zip(image_files, label_files): | |
print(image_name) | |
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_train, image_name, label_name, target_size) | |
image_crop_name = folder_train.replace('/', '_')+'_'+image_name | |
cv2.imwrite(os.path.join(root_folder, data_name, 'images_train', image_crop_name), image_crop) | |
annos_train[image_crop_name] = anno | |
with open(os.path.join(root_folder, data_name, 'train_300W.txt'), 'w') as f: | |
for image_crop_name, anno in annos_train.items(): | |
f.write(image_crop_name+' ') | |
for x,y in anno: | |
f.write(str(x)+' '+str(y)+' ') | |
f.write('\n') | |
# test for data_300W | |
folders_test = ['helen/testset', 'lfpw/testset', 'ibug'] | |
annos_test = {} | |
for folder_test in folders_test: | |
all_files = sorted(os.listdir(os.path.join(root_folder, 'data_300W', folder_test))) | |
image_files = [x for x in all_files if '.pts' not in x] | |
label_files = [x for x in all_files if '.pts' in x] | |
assert len(image_files) == len(label_files) | |
for image_name, label_name in zip(image_files, label_files): | |
print(image_name) | |
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_test, image_name, label_name, target_size) | |
image_crop_name = folder_test.replace('/', '_')+'_'+image_name | |
cv2.imwrite(os.path.join(root_folder, data_name, 'images_test_300W', image_crop_name), image_crop) | |
annos_test[image_crop_name] = anno | |
with open(os.path.join(root_folder, data_name, 'test_300W.txt'), 'w') as f: | |
for image_crop_name, anno in annos_test.items(): | |
f.write(image_crop_name+' ') | |
for x,y in anno: | |
f.write(str(x)+' '+str(y)+' ') | |
f.write('\n') | |
# test for COFW_68 | |
test_mat = hdf5storage.loadmat(os.path.join('../data/COFW', 'COFW_test_color.mat')) | |
images = test_mat['IsT'] | |
bboxes_mat = hdf5storage.loadmat(os.path.join('../data/data_300W_CELEBA', 'cofw68_test_bboxes.mat')) | |
bboxes = bboxes_mat['bboxes'] | |
image_num = images.shape[0] | |
with open('../data/data_300W_CELEBA/test_COFW.txt', 'w') as f: | |
for i in range(image_num): | |
image = images[i,0] | |
# grayscale | |
if len(image.shape) == 2: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) | |
# swap rgb channel to bgr | |
else: | |
image = image[:,:,::-1] | |
bbox = bboxes[i,:] | |
anno_mat = hdf5storage.loadmat(os.path.join('../data/data_300W_CELEBA/cofw68_test_annotations', str(i+1)+'_points.mat')) | |
anno = anno_mat['Points'] | |
image_crop, anno = process_cofw_68_test(image, bbox, anno, target_size) | |
pad_num = 4-len(str(i+1)) | |
image_crop_name = 'cofw_test_' + '0' * pad_num + str(i+1) + '.jpg' | |
cv2.imwrite(os.path.join('../data/data_300W_CELEBA/images_test_COFW', image_crop_name), image_crop) | |
f.write(image_crop_name+' ') | |
for x,y in anno: | |
f.write(str(x)+' '+str(y)+' ') | |
f.write('\n') | |
# test for WFLW_68 | |
test_file = 'list_98pt_rect_attr_test.txt' | |
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_rect_attr_train_test', test_file), 'r') as f: | |
annos_test = f.readlines() | |
annos_test = [x.strip().split() for x in annos_test] | |
names_mapping = {} | |
count = 1 | |
with open(os.path.join(root_folder, 'data_300W_CELEBA', 'test_WFLW_98.txt'), 'w') as f: | |
for anno_test in annos_test: | |
image_crop, anno = process_wflw(anno_test, target_size) | |
pad_num = 4-len(str(count)) | |
image_crop_name = 'wflw_test_' + '0' * pad_num + str(count) + '.jpg' | |
print(image_crop_name) | |
names_mapping[anno_test[0]+'_'+anno_test[-1]] = [image_crop_name, anno] | |
cv2.imwrite(os.path.join(root_folder, data_name, 'images_test_WFLW', image_crop_name), image_crop) | |
f.write(image_crop_name+' ') | |
for x,y in list(anno): | |
f.write(str(x)+' '+str(y)+' ') | |
f.write('\n') | |
count += 1 | |
convert_wflw(root_folder, data_name) | |
gen_meanface(root_folder, data_name) | |
################################################################################################################ | |
elif data_name == 'data_300W_COFW_WFLW': | |
os.system('rmdir ../data/data_300W_COFW_WFLW/images_test') | |
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_300W')): | |
os.mkdir(os.path.join(root_folder, data_name, 'images_test_300W')) | |
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_COFW')): | |
os.mkdir(os.path.join(root_folder, data_name, 'images_test_COFW')) | |
if not os.path.exists(os.path.join(root_folder, data_name, 'images_test_WFLW')): | |
os.mkdir(os.path.join(root_folder, data_name, 'images_test_WFLW')) | |
# train for data_300W | |
folders_train = ['afw', 'helen/trainset', 'lfpw/trainset'] | |
annos_train = {} | |
for folder_train in folders_train: | |
all_files = sorted(os.listdir(os.path.join(root_folder, 'data_300W', folder_train))) | |
image_files = [x for x in all_files if '.pts' not in x] | |
label_files = [x for x in all_files if '.pts' in x] | |
assert len(image_files) == len(label_files) | |
for image_name, label_name in zip(image_files, label_files): | |
print(image_name) | |
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_train, image_name, label_name, target_size) | |
image_crop_name = folder_train.replace('/', '_')+'_'+image_name | |
cv2.imwrite(os.path.join(root_folder, data_name, 'images_train', image_crop_name), image_crop) | |
annos_train[image_crop_name] = anno | |
with open(os.path.join(root_folder, data_name, 'train_300W.txt'), 'w') as f: | |
for image_crop_name, anno in annos_train.items(): | |
f.write(image_crop_name+' ') | |
for x,y in anno: | |
f.write(str(x)+' '+str(y)+' ') | |
f.write('\n') | |
# test for data_300W | |
folders_test = ['helen/testset', 'lfpw/testset', 'ibug'] | |
annos_test = {} | |
for folder_test in folders_test: | |
all_files = sorted(os.listdir(os.path.join(root_folder, 'data_300W', folder_test))) | |
image_files = [x for x in all_files if '.pts' not in x] | |
label_files = [x for x in all_files if '.pts' in x] | |
assert len(image_files) == len(label_files) | |
for image_name, label_name in zip(image_files, label_files): | |
print(image_name) | |
image_crop, anno = process_300w(os.path.join(root_folder, 'data_300W'), folder_test, image_name, label_name, target_size) | |
image_crop_name = folder_test.replace('/', '_')+'_'+image_name | |
cv2.imwrite(os.path.join(root_folder, data_name, 'images_test_300W', image_crop_name), image_crop) | |
annos_test[image_crop_name] = anno | |
with open(os.path.join(root_folder, data_name, 'test_300W.txt'), 'w') as f: | |
for image_crop_name, anno in annos_test.items(): | |
f.write(image_crop_name+' ') | |
for x,y in anno: | |
f.write(str(x)+' '+str(y)+' ') | |
f.write('\n') | |
# train for COFW_68 | |
################### | |
train_file = 'COFW_train_color.mat' | |
train_mat = hdf5storage.loadmat(os.path.join(root_folder, 'COFW', train_file)) | |
images = train_mat['IsTr'] | |
bboxes = train_mat['bboxesTr'] | |
annos = train_mat['phisTr'] | |
count = 1 | |
with open('../data/data_300W_COFW_WFLW/train_COFW.txt', 'w') as f: | |
for i in range(images.shape[0]): | |
image = images[i, 0] | |
# grayscale | |
if len(image.shape) == 2: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) | |
# swap rgb channel to bgr | |
else: | |
image = image[:,:,::-1] | |
bbox = bboxes[i, :] | |
anno = annos[i, :] | |
image_crop, anno = process_cofw_68_train(image, bbox, anno, target_size) | |
pad_num = 4-len(str(count)) | |
image_crop_name = 'cofw_train_' + '0' * pad_num + str(count) + '.jpg' | |
f.write(image_crop_name+'\n') | |
cv2.imwrite(os.path.join(root_folder, 'data_300W_COFW_WFLW', 'images_train', image_crop_name), image_crop) | |
count += 1 | |
################### | |
# test for COFW_68 | |
test_mat = hdf5storage.loadmat(os.path.join('../data/COFW', 'COFW_test_color.mat')) | |
images = test_mat['IsT'] | |
bboxes_mat = hdf5storage.loadmat(os.path.join('../data/data_300W_COFW_WFLW', 'cofw68_test_bboxes.mat')) | |
bboxes = bboxes_mat['bboxes'] | |
image_num = images.shape[0] | |
with open('../data/data_300W_COFW_WFLW/test_COFW.txt', 'w') as f: | |
for i in range(image_num): | |
image = images[i,0] | |
# grayscale | |
if len(image.shape) == 2: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) | |
# swap rgb channel to bgr | |
else: | |
image = image[:,:,::-1] | |
bbox = bboxes[i,:] | |
anno_mat = hdf5storage.loadmat(os.path.join('../data/data_300W_COFW_WFLW/cofw68_test_annotations', str(i+1)+'_points.mat')) | |
anno = anno_mat['Points'] | |
image_crop, anno = process_cofw_68_test(image, bbox, anno, target_size) | |
pad_num = 4-len(str(i+1)) | |
image_crop_name = 'cofw_test_' + '0' * pad_num + str(i+1) + '.jpg' | |
cv2.imwrite(os.path.join('../data/data_300W_COFW_WFLW/images_test_COFW', image_crop_name), image_crop) | |
f.write(image_crop_name+' ') | |
for x,y in anno: | |
f.write(str(x)+' '+str(y)+' ') | |
f.write('\n') | |
# train for WFLW_68 | |
train_file = 'list_98pt_rect_attr_train.txt' | |
with open(os.path.join('../data', 'WFLW', 'WFLW_annotations', 'list_98pt_rect_attr_train_test', train_file), 'r') as f: | |
annos_train = f.readlines() | |
annos_train = [x.strip().split() for x in annos_train] | |
count = 1 | |
with open('../data/data_300W_COFW_WFLW/train_WFLW.txt', 'w') as f: | |
for anno_train in annos_train: | |
image_crop, anno = process_wflw(anno_train, target_size) | |
pad_num = 4-len(str(count)) | |
image_crop_name = 'wflw_train_' + '0' * pad_num + str(count) + '.jpg' | |
print(image_crop_name) | |
f.write(image_crop_name+'\n') | |
cv2.imwrite(os.path.join(root_folder, 'data_300W_COFW_WFLW', 'images_train', image_crop_name), image_crop) | |
count += 1 | |
# test for WFLW_68 | |
test_file = 'list_98pt_rect_attr_test.txt' | |
with open(os.path.join(root_folder, 'WFLW', 'WFLW_annotations', 'list_98pt_rect_attr_train_test', test_file), 'r') as f: | |
annos_test = f.readlines() | |
annos_test = [x.strip().split() for x in annos_test] | |
names_mapping = {} | |
count = 1 | |
with open(os.path.join(root_folder, 'data_300W_COFW_WFLW', 'test_WFLW_98.txt'), 'w') as f: | |
for anno_test in annos_test: | |
image_crop, anno = process_wflw(anno_test, target_size) | |
pad_num = 4-len(str(count)) | |
image_crop_name = 'wflw_test_' + '0' * pad_num + str(count) + '.jpg' | |
print(image_crop_name) | |
names_mapping[anno_test[0]+'_'+anno_test[-1]] = [image_crop_name, anno] | |
cv2.imwrite(os.path.join(root_folder, data_name, 'images_test_WFLW', image_crop_name), image_crop) | |
f.write(image_crop_name+' ') | |
for x,y in list(anno): | |
f.write(str(x)+' '+str(y)+' ') | |
f.write('\n') | |
count += 1 | |
convert_wflw(root_folder, data_name) | |
gen_meanface(root_folder, data_name) | |
else: | |
print('Wrong data!') | |
if __name__ == '__main__': | |
if len(sys.argv) < 2: | |
print('please input the data name.') | |
print('1. CELEBA') | |
print('2. data_300W_CELEBA') | |
print('3. data_300W_COFW_WFLW') | |
exit(0) | |
else: | |
data_name = sys.argv[1] | |
gen_data('../data', data_name, 256) | |