File size: 14,003 Bytes
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import cv2, os
import sys
sys.path.insert(0, '..')
import numpy as np
from PIL import Image
import logging
import importlib

import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

from networks_gssl import *
import data_utils_gssl
from functions_gssl import * 

if not len(sys.argv) == 2:
    print('Format:')
    print('python lib/train_gssl.py config_file')
    exit(0)
experiment_name = sys.argv[1].split('/')[-1][:-3]
data_name = sys.argv[1].split('/')[-2]
config_path = '.experiments.{}.{}'.format(data_name, experiment_name)

my_config = importlib.import_module(config_path, package='PIPNet')
Config = getattr(my_config, 'Config')
cfg = Config()
cfg.experiment_name = experiment_name
cfg.data_name = data_name

os.environ['CUDA_VISIBLE_DEVICES'] = str(cfg.gpu_id)

if not os.path.exists(os.path.join('./snapshots', cfg.data_name)):
    os.mkdir(os.path.join('./snapshots', cfg.data_name))
save_dir = os.path.join('./snapshots', cfg.data_name, cfg.experiment_name)
if not os.path.exists(save_dir):
    os.mkdir(save_dir)

if not os.path.exists(os.path.join('./logs', cfg.data_name)):
    os.mkdir(os.path.join('./logs', cfg.data_name))
log_dir = os.path.join('./logs', cfg.data_name, cfg.experiment_name)
if not os.path.exists(log_dir):
    os.mkdir(log_dir)

logging.basicConfig(filename=os.path.join(log_dir, 'train.log'), level=logging.INFO)

print('###########################################')
print('experiment_name:', cfg.experiment_name)
print('data_name:', cfg.data_name)
print('det_head:', cfg.det_head)
print('net_stride:', cfg.net_stride)
print('batch_size:', cfg.batch_size)
print('init_lr:', cfg.init_lr)
print('num_epochs:', cfg.num_epochs)
print('decay_steps:', cfg.decay_steps)
print('input_size:', cfg.input_size)
print('backbone:', cfg.backbone)
print('pretrained:', cfg.pretrained)
print('criterion_cls:', cfg.criterion_cls)
print('criterion_reg:', cfg.criterion_reg)
print('cls_loss_weight:', cfg.cls_loss_weight)
print('reg_loss_weight:', cfg.reg_loss_weight)
print('num_lms:', cfg.num_lms)
print('save_interval:', cfg.save_interval)
print('num_nb:', cfg.num_nb)
print('use_gpu:', cfg.use_gpu)
print('gpu_id:', cfg.gpu_id)
print('curriculum:', cfg.curriculum)
print('###########################################')
logging.info('###########################################')
logging.info('experiment_name: {}'.format(cfg.experiment_name))
logging.info('data_name: {}'.format(cfg.data_name))
logging.info('det_head: {}'.format(cfg.det_head))
logging.info('net_stride: {}'.format(cfg.net_stride))
logging.info('batch_size: {}'.format(cfg.batch_size))
logging.info('init_lr: {}'.format(cfg.init_lr))
logging.info('num_epochs: {}'.format(cfg.num_epochs))
logging.info('decay_steps: {}'.format(cfg.decay_steps))
logging.info('input_size: {}'.format(cfg.input_size))
logging.info('backbone: {}'.format(cfg.backbone))
logging.info('pretrained: {}'.format(cfg.pretrained))
logging.info('criterion_cls: {}'.format(cfg.criterion_cls))
logging.info('criterion_reg: {}'.format(cfg.criterion_reg))
logging.info('cls_loss_weight: {}'.format(cfg.cls_loss_weight))
logging.info('reg_loss_weight: {}'.format(cfg.reg_loss_weight))
logging.info('num_lms: {}'.format(cfg.num_lms))
logging.info('save_interval: {}'.format(cfg.save_interval))
logging.info('num_nb: {}'.format(cfg.num_nb))
logging.info('use_gpu: {}'.format(cfg.use_gpu))
logging.info('gpu_id: {}'.format(cfg.gpu_id))
logging.info('###########################################')

if cfg.curriculum:
    # self-training with curriculum
    task_type_list = ['cls3', 'cls2', 'std', 'std', 'std']
else:
    # standard self-training 
    task_type_list = ['std']*3

meanface_indices, reverse_index1, reverse_index2, max_len = get_meanface(os.path.join('data', cfg.data_name, 'meanface.txt'), cfg.num_nb)

if cfg.det_head == 'pip':
    if cfg.backbone == 'resnet18':
        resnet18 = models.resnet18(pretrained=cfg.pretrained)
        net = Pip_resnet18(resnet18, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
    else:
        print('No such backbone!')
        exit(0)
else:
    print('No such head:', cfg.det_head)
    exit(0)

if cfg.use_gpu:
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
else:
    device = torch.device("cpu")
net = net.to(device)

criterion_cls = None
if cfg.criterion_cls == 'l2':
    criterion_cls = nn.MSELoss(reduction='sum')
elif cfg.criterion_cls == 'l1':
    criterion_cls = nn.L1Loss()
else:
    print('No such cls criterion:', cfg.criterion_cls)

criterion_reg = None
if cfg.criterion_reg == 'l1':
    criterion_reg = nn.L1Loss(reduction='sum')
elif cfg.criterion_reg == 'l2':
    criterion_reg = nn.MSELoss()
else:
    print('No such reg criterion:', cfg.criterion_reg)

points_flip = [17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 28, 29, 30, 31, 36, 35, 34, 33, 32, 46, 45, 44, 43, 48, 47, 40, 39, 38, 37, 42, 41, 55, 54, 53, 52, 51, 50, 49, 60, 59, 58, 57, 56, 65, 64, 63, 62, 61, 68, 67, 66]
points_flip = (np.array(points_flip)-1).tolist()
assert len(points_flip) == 68

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.decay_steps, gamma=0.1)

labels = get_label(cfg.data_name, 'train_300W.txt', 'std')

train_data = data_utils_gssl.ImageFolder_pip(os.path.join('data', cfg.data_name, 'images_train'), 
                                        labels, cfg.input_size, cfg.num_lms, 
                                        cfg.net_stride, points_flip, meanface_indices,
                                        transforms.Compose([
                                        transforms.RandomGrayscale(0.2),
                                        transforms.ToTensor(),
                                        normalize]))

train_loader = torch.utils.data.DataLoader(train_data, batch_size=cfg.batch_size, shuffle=True, num_workers=8, pin_memory=True, drop_last=True)

train_model(cfg.det_head, net, train_loader, criterion_cls, criterion_reg, cfg.cls_loss_weight, cfg.reg_loss_weight, cfg.num_nb, optimizer, cfg.num_epochs, scheduler, save_dir, cfg.save_interval, device)

###############
# test
norm_indices = [36, 45]

preprocess = transforms.Compose([transforms.Resize((cfg.input_size, cfg.input_size)), transforms.ToTensor(), normalize])
test_data_list = ['300W', 'COFW', 'WFLW']
for test_data in test_data_list:
    labels = get_label(cfg.data_name, 'test_'+test_data+'.txt')
    nmes = []
    norm = None
    for label in labels:
        image_name = label[0]
        lms_gt = label[1]
        image_path = os.path.join('data', cfg.data_name, 'images_test_'+test_data, image_name)
        image = cv2.imread(image_path)
        image = cv2.resize(image, (cfg.input_size, cfg.input_size))
        inputs = Image.fromarray(image[:,:,::-1].astype('uint8'), 'RGB')
        inputs = preprocess(inputs).unsqueeze(0)
        inputs = inputs.to(device)
        lms_pred_x, lms_pred_y, lms_pred_nb_x, lms_pred_nb_y, outputs_cls, max_cls = forward_pip(net, inputs, preprocess, cfg.input_size, cfg.net_stride, cfg.num_nb)
        # inter-ocular
        norm = np.linalg.norm(lms_gt.reshape(-1, 2)[norm_indices[0]] - lms_gt.reshape(-1, 2)[norm_indices[1]])
        #############################
        # merge neighbor predictions
        lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten().cpu().numpy()
        tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
        tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
        tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1,1)
        tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1,1)
        lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten().cpu().numpy()
        #############################
        nme = compute_nme(lms_pred_merge, lms_gt, norm)
        nmes.append(nme)
    
    print('{} nme: {}'.format(test_data, np.mean(nmes)))
    logging.info('{} nme: {}'.format(test_data, np.mean(nmes)))

for ti, task_type in enumerate(task_type_list):
    print('###################################################')
    print('Iter:', ti, 'task_type:', task_type)
    ###############
    # estimate
    if cfg.data_name == 'data_300W_COFW_WFLW':
        est_data_list = ['COFW', 'WFLW']
    elif cfg.data_name == 'data_300W_CELEBA': 
        est_data_list = ['CELEBA']
    else:
        print('No such data!')
        exit(0)
    est_preds = []
    for est_data in est_data_list:
        labels = get_label(cfg.data_name, 'train_'+est_data+'.txt')
        for label in labels:
            image_name = label[0]
            #print(image_name)
            image_path = os.path.join('data', cfg.data_name, 'images_train', image_name)
            image = cv2.imread(image_path)
            image = cv2.resize(image, (cfg.input_size, cfg.input_size))
            inputs = Image.fromarray(image[:,:,::-1].astype('uint8'), 'RGB')
            inputs = preprocess(inputs).unsqueeze(0)
            inputs = inputs.to(device)
            lms_pred_x, lms_pred_y, lms_pred_nb_x, lms_pred_nb_y, outputs_cls, max_cls = forward_pip(net, inputs, preprocess, cfg.input_size, cfg.net_stride, cfg.num_nb)
            #############################
            # merge neighbor predictions
            lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten().cpu().numpy()
            tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
            tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
            tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1,1)
            tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1,1)
            lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten().cpu().numpy()
            #############################
            est_preds.append([image_name, task_type, lms_pred_merge])
    
    ################
    # GSSL 
    if cfg.det_head == 'pip':
        if cfg.backbone == 'resnet18':
            resnet18 = models.resnet18(pretrained=cfg.pretrained)
            net = Pip_resnet18(resnet18, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
        else:
            print('No such backbone!')
            exit(0)
    else:
        print('No such head:', cfg.det_head)
        exit(0)

    net = net.to(device)
    optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.decay_steps, gamma=0.1)
    labels = get_label(cfg.data_name, 'train_300W.txt', 'std')
    labels += est_preds
    
    train_data = data_utils_gssl.ImageFolder_pip(os.path.join('data', cfg.data_name, 'images_train'), 
                                            labels, cfg.input_size, cfg.num_lms, 
                                            cfg.net_stride, points_flip, meanface_indices,
                                            transforms.Compose([
                                            transforms.RandomGrayscale(0.2),
                                            transforms.ToTensor(),
                                            normalize]))
    
    train_loader = torch.utils.data.DataLoader(train_data, batch_size=cfg.batch_size, shuffle=True, num_workers=8, pin_memory=True, drop_last=True)
    
    train_model(cfg.det_head, net, train_loader, criterion_cls, criterion_reg, cfg.cls_loss_weight, cfg.reg_loss_weight, cfg.num_nb, optimizer, cfg.num_epochs, scheduler, save_dir, cfg.save_interval, device)
    
    ###############
    # test
    preprocess = transforms.Compose([transforms.Resize((cfg.input_size, cfg.input_size)), transforms.ToTensor(), normalize])
    test_data_list = ['300W', 'COFW', 'WFLW']
    for test_data in test_data_list:
        labels = get_label(cfg.data_name, 'test_'+test_data+'.txt')
        nmes = []
        norm = None
        for label in labels:
            image_name = label[0]
            lms_gt = label[1]
            image_path = os.path.join('data', cfg.data_name, 'images_test_'+test_data, image_name)
            image = cv2.imread(image_path)
            image = cv2.resize(image, (cfg.input_size, cfg.input_size))
            inputs = Image.fromarray(image[:,:,::-1].astype('uint8'), 'RGB')
            inputs = preprocess(inputs).unsqueeze(0)
            inputs = inputs.to(device)
            lms_pred_x, lms_pred_y, lms_pred_nb_x, lms_pred_nb_y, outputs_cls, max_cls = forward_pip(net, inputs, preprocess, cfg.input_size, cfg.net_stride, cfg.num_nb)
            # inter-ocular
            norm = np.linalg.norm(lms_gt.reshape(-1, 2)[norm_indices[0]] - lms_gt.reshape(-1, 2)[norm_indices[1]])
            #############################
            # merge neighbor predictions
            lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten().cpu().numpy()
            tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
            tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(cfg.num_lms, max_len)
            tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1,1)
            tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1,1)
            lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten().cpu().numpy()
            #############################
            nme = compute_nme(lms_pred_merge, lms_gt, norm)
            nmes.append(nme)
        
        print('{} nme: {}'.format(test_data, np.mean(nmes)))
        logging.info('{} nme: {}'.format(test_data, np.mean(nmes)))