File size: 14,748 Bytes
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import torch.utils.data as data
import torch
from PIL import Image, ImageFilter 
import os, cv2
import numpy as np
import random
from scipy.stats import norm
from math import floor

def random_translate(image, target):
    if random.random() > 0.5:
        image_height, image_width = image.size
        a = 1
        b = 0
        #c = 30 #left/right (i.e. 5/-5)
        c = int((random.random()-0.5) * 60)
        d = 0
        e = 1
        #f = 30 #up/down (i.e. 5/-5)
        f = int((random.random()-0.5) * 60)
        image = image.transform(image.size, Image.AFFINE, (a, b, c, d, e, f))
        target_translate = target.copy()
        target_translate = target_translate.reshape(-1, 2)
        target_translate[:, 0] -= 1.*c/image_width
        target_translate[:, 1] -= 1.*f/image_height
        target_translate = target_translate.flatten()
        target_translate[target_translate < 0] = 0
        target_translate[target_translate > 1] = 1
        return image, target_translate
    else:
        return image, target

def random_blur(image):
    if random.random() > 0.7:
        image = image.filter(ImageFilter.GaussianBlur(random.random()*5))
    return image

def random_occlusion(image):
    if random.random() > 0.5:
        image_np = np.array(image).astype(np.uint8)
        image_np = image_np[:,:,::-1]
        image_height, image_width, _ = image_np.shape
        occ_height = int(image_height*0.4*random.random())
        occ_width = int(image_width*0.4*random.random())
        occ_xmin = int((image_width - occ_width - 10) * random.random())
        occ_ymin = int((image_height - occ_height - 10) * random.random())
        image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 0] = int(random.random() * 255)
        image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 1] = int(random.random() * 255)
        image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 2] = int(random.random() * 255)
        image_pil = Image.fromarray(image_np[:,:,::-1].astype('uint8'), 'RGB')
        return image_pil
    else:
        return image

def random_flip(image, target, points_flip):
    if random.random() > 0.5:
        image = image.transpose(Image.FLIP_LEFT_RIGHT)
        target = np.array(target).reshape(-1, 2)
        target = target[points_flip, :]
        target[:,0] = 1-target[:,0]
        target = target.flatten()
        return image, target
    else:
        return image, target

def random_rotate(image, target, angle_max):
    if random.random() > 0.5:
        center_x = 0.5
        center_y = 0.5
        landmark_num= int(len(target) / 2)
        target_center = np.array(target) - np.array([center_x, center_y]*landmark_num)
        target_center = target_center.reshape(landmark_num, 2)
        theta_max = np.radians(angle_max)
        theta = random.uniform(-theta_max, theta_max)
        angle = np.degrees(theta)
        image = image.rotate(angle)

        c, s = np.cos(theta), np.sin(theta)
        rot = np.array(((c,-s), (s, c)))
        target_center_rot = np.matmul(target_center, rot)
        target_rot = target_center_rot.reshape(landmark_num*2) + np.array([center_x, center_y]*landmark_num)
        return image, target_rot
    else:
        return image, target

def gen_target_pip(target, meanface_indices, target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y):
    num_nb = len(meanface_indices[0])
    map_channel1, map_height1, map_width1 = target_map1.shape
    map_channel2, map_height2, map_width2 = target_map2.shape
    map_channel3, map_height3, map_width3 = target_map3.shape
    target = target.reshape(-1, 2)
    assert map_channel1 == target.shape[0]

    for i in range(map_channel1):
        mu_x1 = int(floor(target[i][0] * map_width1))
        mu_y1 = int(floor(target[i][1] * map_height1))
        mu_x1 = max(0, mu_x1)
        mu_y1 = max(0, mu_y1)
        mu_x1 = min(mu_x1, map_width1-1)
        mu_y1 = min(mu_y1, map_height1-1)
        target_map1[i, mu_y1, mu_x1] = 1

        shift_x = target[i][0] * map_width1 - mu_x1
        shift_y = target[i][1] * map_height1 - mu_y1
        target_local_x[i, mu_y1, mu_x1] = shift_x
        target_local_y[i, mu_y1, mu_x1] = shift_y

        for j in range(num_nb):
            nb_x = target[meanface_indices[i][j]][0] * map_width1 - mu_x1
            nb_y = target[meanface_indices[i][j]][1] * map_height1 - mu_y1
            target_nb_x[num_nb*i+j, mu_y1, mu_x1] = nb_x
            target_nb_y[num_nb*i+j, mu_y1, mu_x1] = nb_y

        mu_x2 = int(floor(target[i][0] * map_width2))
        mu_y2 = int(floor(target[i][1] * map_height2))
        mu_x2 = max(0, mu_x2)
        mu_y2 = max(0, mu_y2)
        mu_x2 = min(mu_x2, map_width2-1)
        mu_y2 = min(mu_y2, map_height2-1)
        target_map2[i, mu_y2, mu_x2] = 1

        mu_x3 = int(floor(target[i][0] * map_width3))
        mu_y3 = int(floor(target[i][1] * map_height3))
        mu_x3 = max(0, mu_x3)
        mu_y3 = max(0, mu_y3)
        mu_x3 = min(mu_x3, map_width3-1)
        mu_y3 = min(mu_y3, map_height3-1)
        target_map3[i, mu_y3, mu_x3] = 1

    return target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y

def gen_target_pip_cls1(target, target_map1):
    map_channel1, map_height1, map_width1 = target_map1.shape
    target = target.reshape(-1, 2)
    assert map_channel1 == target.shape[0]

    for i in range(map_channel1):
        mu_x1 = int(floor(target[i][0] * map_width1))
        mu_y1 = int(floor(target[i][1] * map_height1))
        mu_x1 = max(0, mu_x1)
        mu_y1 = max(0, mu_y1)
        mu_x1 = min(mu_x1, map_width1-1)
        mu_y1 = min(mu_y1, map_height1-1)
        target_map1[i, mu_y1, mu_x1] = 1

    return target_map1 

def gen_target_pip_cls2(target, target_map2):
    map_channel2, map_height2, map_width2 = target_map2.shape
    target = target.reshape(-1, 2)
    assert map_channel2 == target.shape[0]

    for i in range(map_channel2):
        mu_x2 = int(floor(target[i][0] * map_width2))
        mu_y2 = int(floor(target[i][1] * map_height2))
        mu_x2 = max(0, mu_x2)
        mu_y2 = max(0, mu_y2)
        mu_x2 = min(mu_x2, map_width2-1)
        mu_y2 = min(mu_y2, map_height2-1)
        target_map2[i, mu_y2, mu_x2] = 1

    return target_map2 

def gen_target_pip_cls3(target, target_map3):
    map_channel3, map_height3, map_width3 = target_map3.shape
    target = target.reshape(-1, 2)
    assert map_channel3 == target.shape[0]

    for i in range(map_channel3):
        mu_x3 = int(floor(target[i][0] * map_width3))
        mu_y3 = int(floor(target[i][1] * map_height3))
        mu_x3 = max(0, mu_x3)
        mu_y3 = max(0, mu_y3)
        mu_x3 = min(mu_x3, map_width3-1)
        mu_y3 = min(mu_y3, map_height3-1)
        target_map3[i, mu_y3, mu_x3] = 1

    return target_map3 

class ImageFolder_pip(data.Dataset):
    def __init__(self, root, imgs, input_size, num_lms, net_stride, points_flip, meanface_indices, transform=None, target_transform=None):
        self.root = root
        self.imgs = imgs
        self.num_lms = num_lms
        self.net_stride = net_stride
        self.points_flip = points_flip
        self.meanface_indices = meanface_indices
        self.num_nb = len(meanface_indices[0])
        self.transform = transform
        self.target_transform = target_transform
        self.input_size = input_size

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (image, target) where target is class_index of the target class.
        """
        img_name, target_type, target = self.imgs[index]
        img = Image.open(os.path.join(self.root, img_name)).convert('RGB')

        img, target = random_translate(img, target)
        img = random_occlusion(img)
        img, target = random_flip(img, target, self.points_flip)
        img, target = random_rotate(img, target, 30)
        img = random_blur(img)

        target_map1 = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        target_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
        target_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
        target_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        target_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        target_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        target_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))

        mask_map1 = np.ones((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        mask_map2 = np.ones((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
        mask_map3 = np.ones((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
        mask_local_x = np.ones((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        mask_local_y = np.ones((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        mask_nb_x = np.ones((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        mask_nb_y = np.ones((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))

        if target_type == 'std':
            target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y = gen_target_pip(target, self.meanface_indices, target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y)
            mask_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
            mask_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
        elif target_type == 'cls1':
            target_map1 = gen_target_pip_cls1(target, target_map1)
            mask_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
            mask_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
            mask_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        elif target_type == 'cls2':
            target_map2 = gen_target_pip_cls2(target, target_map2)
            mask_map1 = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
            mask_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        elif target_type == 'cls3':
            target_map3 = gen_target_pip_cls3(target, target_map3)
            mask_map1 = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
            mask_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
            mask_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        else:
            print('No such target type!')
            exit(0)

        target_map1 = torch.from_numpy(target_map1).float()
        target_map2 = torch.from_numpy(target_map2).float()
        target_map3 = torch.from_numpy(target_map3).float()
        target_local_x = torch.from_numpy(target_local_x).float()
        target_local_y = torch.from_numpy(target_local_y).float()
        target_nb_x = torch.from_numpy(target_nb_x).float()
        target_nb_y = torch.from_numpy(target_nb_y).float()
        mask_map1 = torch.from_numpy(mask_map1).float()
        mask_map2 = torch.from_numpy(mask_map2).float()
        mask_map3 = torch.from_numpy(mask_map3).float()
        mask_local_x = torch.from_numpy(mask_local_x).float()
        mask_local_y = torch.from_numpy(mask_local_y).float()
        mask_nb_x = torch.from_numpy(mask_nb_x).float()
        mask_nb_y = torch.from_numpy(mask_nb_y).float()

        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target_map1 = self.target_transform(target_map1)
            target_map2 = self.target_transform(target_map2)
            target_map3 = self.target_transform(target_map3)
            target_local_x = self.target_transform(target_local_x)
            target_local_y = self.target_transform(target_local_y)
            target_nb_x = self.target_transform(target_nb_x)
            target_nb_y = self.target_transform(target_nb_y)

        return img, target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y, mask_map1, mask_map2, mask_map3, mask_local_x, mask_local_y, mask_nb_x, mask_nb_y

    def __len__(self):
        return len(self.imgs)

if __name__ == '__main__':
    pass