Spaces:
Running
Running
File size: 14,748 Bytes
b9be4e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import torch.utils.data as data
import torch
from PIL import Image, ImageFilter
import os, cv2
import numpy as np
import random
from scipy.stats import norm
from math import floor
def random_translate(image, target):
if random.random() > 0.5:
image_height, image_width = image.size
a = 1
b = 0
#c = 30 #left/right (i.e. 5/-5)
c = int((random.random()-0.5) * 60)
d = 0
e = 1
#f = 30 #up/down (i.e. 5/-5)
f = int((random.random()-0.5) * 60)
image = image.transform(image.size, Image.AFFINE, (a, b, c, d, e, f))
target_translate = target.copy()
target_translate = target_translate.reshape(-1, 2)
target_translate[:, 0] -= 1.*c/image_width
target_translate[:, 1] -= 1.*f/image_height
target_translate = target_translate.flatten()
target_translate[target_translate < 0] = 0
target_translate[target_translate > 1] = 1
return image, target_translate
else:
return image, target
def random_blur(image):
if random.random() > 0.7:
image = image.filter(ImageFilter.GaussianBlur(random.random()*5))
return image
def random_occlusion(image):
if random.random() > 0.5:
image_np = np.array(image).astype(np.uint8)
image_np = image_np[:,:,::-1]
image_height, image_width, _ = image_np.shape
occ_height = int(image_height*0.4*random.random())
occ_width = int(image_width*0.4*random.random())
occ_xmin = int((image_width - occ_width - 10) * random.random())
occ_ymin = int((image_height - occ_height - 10) * random.random())
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 0] = int(random.random() * 255)
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 1] = int(random.random() * 255)
image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 2] = int(random.random() * 255)
image_pil = Image.fromarray(image_np[:,:,::-1].astype('uint8'), 'RGB')
return image_pil
else:
return image
def random_flip(image, target, points_flip):
if random.random() > 0.5:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
target = np.array(target).reshape(-1, 2)
target = target[points_flip, :]
target[:,0] = 1-target[:,0]
target = target.flatten()
return image, target
else:
return image, target
def random_rotate(image, target, angle_max):
if random.random() > 0.5:
center_x = 0.5
center_y = 0.5
landmark_num= int(len(target) / 2)
target_center = np.array(target) - np.array([center_x, center_y]*landmark_num)
target_center = target_center.reshape(landmark_num, 2)
theta_max = np.radians(angle_max)
theta = random.uniform(-theta_max, theta_max)
angle = np.degrees(theta)
image = image.rotate(angle)
c, s = np.cos(theta), np.sin(theta)
rot = np.array(((c,-s), (s, c)))
target_center_rot = np.matmul(target_center, rot)
target_rot = target_center_rot.reshape(landmark_num*2) + np.array([center_x, center_y]*landmark_num)
return image, target_rot
else:
return image, target
def gen_target_pip(target, meanface_indices, target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y):
num_nb = len(meanface_indices[0])
map_channel1, map_height1, map_width1 = target_map1.shape
map_channel2, map_height2, map_width2 = target_map2.shape
map_channel3, map_height3, map_width3 = target_map3.shape
target = target.reshape(-1, 2)
assert map_channel1 == target.shape[0]
for i in range(map_channel1):
mu_x1 = int(floor(target[i][0] * map_width1))
mu_y1 = int(floor(target[i][1] * map_height1))
mu_x1 = max(0, mu_x1)
mu_y1 = max(0, mu_y1)
mu_x1 = min(mu_x1, map_width1-1)
mu_y1 = min(mu_y1, map_height1-1)
target_map1[i, mu_y1, mu_x1] = 1
shift_x = target[i][0] * map_width1 - mu_x1
shift_y = target[i][1] * map_height1 - mu_y1
target_local_x[i, mu_y1, mu_x1] = shift_x
target_local_y[i, mu_y1, mu_x1] = shift_y
for j in range(num_nb):
nb_x = target[meanface_indices[i][j]][0] * map_width1 - mu_x1
nb_y = target[meanface_indices[i][j]][1] * map_height1 - mu_y1
target_nb_x[num_nb*i+j, mu_y1, mu_x1] = nb_x
target_nb_y[num_nb*i+j, mu_y1, mu_x1] = nb_y
mu_x2 = int(floor(target[i][0] * map_width2))
mu_y2 = int(floor(target[i][1] * map_height2))
mu_x2 = max(0, mu_x2)
mu_y2 = max(0, mu_y2)
mu_x2 = min(mu_x2, map_width2-1)
mu_y2 = min(mu_y2, map_height2-1)
target_map2[i, mu_y2, mu_x2] = 1
mu_x3 = int(floor(target[i][0] * map_width3))
mu_y3 = int(floor(target[i][1] * map_height3))
mu_x3 = max(0, mu_x3)
mu_y3 = max(0, mu_y3)
mu_x3 = min(mu_x3, map_width3-1)
mu_y3 = min(mu_y3, map_height3-1)
target_map3[i, mu_y3, mu_x3] = 1
return target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y
def gen_target_pip_cls1(target, target_map1):
map_channel1, map_height1, map_width1 = target_map1.shape
target = target.reshape(-1, 2)
assert map_channel1 == target.shape[0]
for i in range(map_channel1):
mu_x1 = int(floor(target[i][0] * map_width1))
mu_y1 = int(floor(target[i][1] * map_height1))
mu_x1 = max(0, mu_x1)
mu_y1 = max(0, mu_y1)
mu_x1 = min(mu_x1, map_width1-1)
mu_y1 = min(mu_y1, map_height1-1)
target_map1[i, mu_y1, mu_x1] = 1
return target_map1
def gen_target_pip_cls2(target, target_map2):
map_channel2, map_height2, map_width2 = target_map2.shape
target = target.reshape(-1, 2)
assert map_channel2 == target.shape[0]
for i in range(map_channel2):
mu_x2 = int(floor(target[i][0] * map_width2))
mu_y2 = int(floor(target[i][1] * map_height2))
mu_x2 = max(0, mu_x2)
mu_y2 = max(0, mu_y2)
mu_x2 = min(mu_x2, map_width2-1)
mu_y2 = min(mu_y2, map_height2-1)
target_map2[i, mu_y2, mu_x2] = 1
return target_map2
def gen_target_pip_cls3(target, target_map3):
map_channel3, map_height3, map_width3 = target_map3.shape
target = target.reshape(-1, 2)
assert map_channel3 == target.shape[0]
for i in range(map_channel3):
mu_x3 = int(floor(target[i][0] * map_width3))
mu_y3 = int(floor(target[i][1] * map_height3))
mu_x3 = max(0, mu_x3)
mu_y3 = max(0, mu_y3)
mu_x3 = min(mu_x3, map_width3-1)
mu_y3 = min(mu_y3, map_height3-1)
target_map3[i, mu_y3, mu_x3] = 1
return target_map3
class ImageFolder_pip(data.Dataset):
def __init__(self, root, imgs, input_size, num_lms, net_stride, points_flip, meanface_indices, transform=None, target_transform=None):
self.root = root
self.imgs = imgs
self.num_lms = num_lms
self.net_stride = net_stride
self.points_flip = points_flip
self.meanface_indices = meanface_indices
self.num_nb = len(meanface_indices[0])
self.transform = transform
self.target_transform = target_transform
self.input_size = input_size
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
img_name, target_type, target = self.imgs[index]
img = Image.open(os.path.join(self.root, img_name)).convert('RGB')
img, target = random_translate(img, target)
img = random_occlusion(img)
img, target = random_flip(img, target, self.points_flip)
img, target = random_rotate(img, target, 30)
img = random_blur(img)
target_map1 = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
target_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
target_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
target_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_map1 = np.ones((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_map2 = np.ones((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
mask_map3 = np.ones((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
mask_local_x = np.ones((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_local_y = np.ones((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_nb_x = np.ones((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_nb_y = np.ones((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
if target_type == 'std':
target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y = gen_target_pip(target, self.meanface_indices, target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y)
mask_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
mask_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
elif target_type == 'cls1':
target_map1 = gen_target_pip_cls1(target, target_map1)
mask_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
mask_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
mask_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
elif target_type == 'cls2':
target_map2 = gen_target_pip_cls2(target, target_map2)
mask_map1 = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_map3 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/4), int(self.input_size/self.net_stride/4)))
mask_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
elif target_type == 'cls3':
target_map3 = gen_target_pip_cls3(target, target_map3)
mask_map1 = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_map2 = np.zeros((self.num_lms, int(self.input_size/self.net_stride/2), int(self.input_size/self.net_stride/2)))
mask_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
mask_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
else:
print('No such target type!')
exit(0)
target_map1 = torch.from_numpy(target_map1).float()
target_map2 = torch.from_numpy(target_map2).float()
target_map3 = torch.from_numpy(target_map3).float()
target_local_x = torch.from_numpy(target_local_x).float()
target_local_y = torch.from_numpy(target_local_y).float()
target_nb_x = torch.from_numpy(target_nb_x).float()
target_nb_y = torch.from_numpy(target_nb_y).float()
mask_map1 = torch.from_numpy(mask_map1).float()
mask_map2 = torch.from_numpy(mask_map2).float()
mask_map3 = torch.from_numpy(mask_map3).float()
mask_local_x = torch.from_numpy(mask_local_x).float()
mask_local_y = torch.from_numpy(mask_local_y).float()
mask_nb_x = torch.from_numpy(mask_nb_x).float()
mask_nb_y = torch.from_numpy(mask_nb_y).float()
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target_map1 = self.target_transform(target_map1)
target_map2 = self.target_transform(target_map2)
target_map3 = self.target_transform(target_map3)
target_local_x = self.target_transform(target_local_x)
target_local_y = self.target_transform(target_local_y)
target_nb_x = self.target_transform(target_nb_x)
target_nb_y = self.target_transform(target_nb_y)
return img, target_map1, target_map2, target_map3, target_local_x, target_local_y, target_nb_x, target_nb_y, mask_map1, mask_map2, mask_map3, mask_local_x, mask_local_y, mask_nb_x, mask_nb_y
def __len__(self):
return len(self.imgs)
if __name__ == '__main__':
pass
|