Spaces:
Running
Running
File size: 10,618 Bytes
a104d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: fs_model_fix_idnorm_donggp_saveoptim copy.py
# Created Date: Wednesday January 12th 2022
# Author: Chen Xuanhong
# Email: [email protected]
# Last Modified: Thursday, 21st April 2022 8:13:37 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2022 Shanghai Jiao Tong University
#############################################################
import torch
import torch.nn as nn
from modules.layers.simswap.base_model import BaseModel
from modules.layers.simswap.fs_networks_fix import Generator_Adain_Upsample
from modules.layers.simswap.pg_modules.projected_discriminator import ProjectedDiscriminator
def compute_grad2(d_out, x_in):
batch_size = x_in.size(0)
grad_dout = torch.autograd.grad(
outputs=d_out.sum(), inputs=x_in,
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad_dout2 = grad_dout.pow(2)
assert(grad_dout2.size() == x_in.size())
reg = grad_dout2.view(batch_size, -1).sum(1)
return reg
class fsModel(BaseModel):
def name(self):
return 'fsModel'
def initialize(self, opt):
BaseModel.initialize(self, opt)
# if opt.resize_or_crop != 'none' or not opt.isTrain: # when training at full res this causes OOM
self.isTrain = opt.isTrain
# Generator network
self.netG = Generator_Adain_Upsample(input_nc=3, output_nc=3, latent_size=512, n_blocks=9, deep=opt.Gdeep)
self.netG.cuda()
# Id network
from third_party.arcface import iresnet100
netArc_pth = "/apdcephfs_cq2/share_1290939/gavinyuan/code/FaceShifter/faceswap/faceswap/" \
"checkpoints/face_id/ms1mv3_arcface_r100_fp16_backbone.pth" #opt.Arc_path
self.netArc = iresnet100(pretrained=False, fp16=False)
self.netArc.load_state_dict(torch.load(netArc_pth, map_location="cpu"))
# netArc_checkpoint = opt.Arc_path
# netArc_checkpoint = torch.load(netArc_checkpoint, map_location=torch.device("cpu"))
# self.netArc = netArc_checkpoint['model'].module
self.netArc = self.netArc.cuda()
self.netArc.eval()
self.netArc.requires_grad_(False)
if not self.isTrain:
pretrained_path = opt.checkpoints_dir
self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path)
return
self.netD = ProjectedDiscriminator(diffaug=False, interp224=False, **{})
# self.netD.feature_network.requires_grad_(False)
self.netD.cuda()
if self.isTrain:
# define loss functions
self.criterionFeat = nn.L1Loss()
self.criterionRec = nn.L1Loss()
# initialize optimizers
# optimizer G
params = list(self.netG.parameters())
self.optimizer_G = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.99),eps=1e-8)
# optimizer D
params = list(self.netD.parameters())
self.optimizer_D = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.99),eps=1e-8)
# load networks
if opt.continue_train:
pretrained_path = '' if not self.isTrain else opt.load_pretrain
# print (pretrained_path)
self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path)
self.load_network(self.netD, 'D', opt.which_epoch, pretrained_path)
self.load_optim(self.optimizer_G, 'G', opt.which_epoch, pretrained_path)
self.load_optim(self.optimizer_D, 'D', opt.which_epoch, pretrained_path)
torch.cuda.empty_cache()
def cosin_metric(self, x1, x2):
#return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2))
return torch.sum(x1 * x2, dim=1) / (torch.norm(x1, dim=1) * torch.norm(x2, dim=1))
def save(self, which_epoch):
self.save_network(self.netG, 'G', which_epoch)
self.save_network(self.netD, 'D', which_epoch)
self.save_optim(self.optimizer_G, 'G', which_epoch)
self.save_optim(self.optimizer_D, 'D', which_epoch)
'''if self.gen_features:
self.save_network(self.netE, 'E', which_epoch, self.gpu_ids)'''
def update_fixed_params(self):
raise ValueError('Not used')
# after fixing the global generator for a number of iterations, also start finetuning it
params = list(self.netG.parameters())
if self.gen_features:
params += list(self.netE.parameters())
self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
if self.opt.verbose:
print('------------ Now also finetuning global generator -----------')
def update_learning_rate(self):
raise ValueError('Not used')
lrd = self.opt.lr / self.opt.niter_decay
lr = self.old_lr - lrd
for param_group in self.optimizer_D.param_groups:
param_group['lr'] = lr
for param_group in self.optimizer_G.param_groups:
param_group['lr'] = lr
if self.opt.verbose:
print('update learning rate: %f -> %f' % (self.old_lr, lr))
self.old_lr = lr
if __name__ == "__main__":
import os
import argparse
def str2bool(v):
return v.lower() in ('true')
class TrainOptions:
def __init__(self):
self.parser = argparse.ArgumentParser()
self.initialized = False
def initialize(self):
self.parser.add_argument('--name', type=str, default='simswap',
help='name of the experiment. It decides where to store samples and models')
self.parser.add_argument('--gpu_ids', default='0')
self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints',
help='models are saved here')
self.parser.add_argument('--isTrain', type=str2bool, default='True')
# input/output sizes
self.parser.add_argument('--batchSize', type=int, default=8, help='input batch size')
# for displays
self.parser.add_argument('--use_tensorboard', type=str2bool, default='False')
# for training
self.parser.add_argument('--dataset', type=str, default="/path/to/VGGFace2",
help='path to the face swapping dataset')
self.parser.add_argument('--continue_train', type=str2bool, default='False',
help='continue training: load the latest model')
self.parser.add_argument('--load_pretrain', type=str, default='./checkpoints/simswap224_test',
help='load the pretrained model from the specified location')
self.parser.add_argument('--which_epoch', type=str, default='10000',
help='which epoch to load? set to latest to use latest cached model')
self.parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc')
self.parser.add_argument('--niter', type=int, default=10000, help='# of iter at starting learning rate')
self.parser.add_argument('--niter_decay', type=int, default=10000,
help='# of iter to linearly decay learning rate to zero')
self.parser.add_argument('--beta1', type=float, default=0.0, help='momentum term of adam')
self.parser.add_argument('--lr', type=float, default=0.0004, help='initial learning rate for adam')
self.parser.add_argument('--Gdeep', type=str2bool, default='False')
# for discriminators
self.parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
self.parser.add_argument('--lambda_id', type=float, default=30.0, help='weight for id loss')
self.parser.add_argument('--lambda_rec', type=float, default=10.0, help='weight for reconstruction loss')
self.parser.add_argument("--Arc_path", type=str, default='arcface_model/arcface_checkpoint.tar',
help="run ONNX model via TRT")
self.parser.add_argument("--total_step", type=int, default=1000000, help='total training step')
self.parser.add_argument("--log_frep", type=int, default=200, help='frequence for printing log information')
self.parser.add_argument("--sample_freq", type=int, default=1000, help='frequence for sampling')
self.parser.add_argument("--model_freq", type=int, default=10000, help='frequence for saving the model')
self.isTrain = True
def parse(self, save=True):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
self.opt.isTrain = self.isTrain # train or test
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
# save to the disk
# if self.opt.isTrain:
# expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
# util.mkdirs(expr_dir)
# if save and not self.opt.continue_train:
# file_name = os.path.join(expr_dir, 'opt.txt')
# with open(file_name, 'wt') as opt_file:
# opt_file.write('------------ Options -------------\n')
# for k, v in sorted(args.items()):
# opt_file.write('%s: %s\n' % (str(k), str(v)))
# opt_file.write('-------------- End ----------------\n')
return self.opt
source = torch.randn(8, 3, 256, 256).cuda()
target = torch.randn(8, 3, 256, 256).cuda()
opt = TrainOptions().parse()
model = fsModel()
model.initialize(opt)
import torch.nn.functional as F
img_id_112 = F.interpolate(source, size=(112, 112), mode='bicubic')
latent_id = model.netArc(img_id_112)
latent_id = F.normalize(latent_id, p=2, dim=1)
img_fake = model.netG(target, latent_id)
gen_logits, _ = model.netD(img_fake.detach(), None)
loss_Dgen = (F.relu(torch.ones_like(gen_logits) + gen_logits)).mean()
real_logits, _ = model.netD(source, None)
print('img_fake:', img_fake.shape, 'real_logits:', real_logits.shape)
|