Spaces:
Running
Running
File size: 6,696 Bytes
a104d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
from functools import partial
import numpy as np
import torch
import torch.nn as nn
from modules.layers.simswap.pg_modules.blocks import DownBlock, DownBlockPatch, conv2d
from modules.layers.simswap.pg_modules.projector import F_RandomProj
from modules.layers.simswap.pg_modules.diffaug import DiffAugment
class SingleDisc(nn.Module):
def __init__(self, nc=None, ndf=None, start_sz=256, end_sz=8, head=None, separable=False, patch=False):
super().__init__()
channel_dict = {4: 512, 8: 512, 16: 256, 32: 128, 64: 64, 128: 64,
256: 32, 512: 16, 1024: 8}
# interpolate for start sz that are not powers of two
if start_sz not in channel_dict.keys():
sizes = np.array(list(channel_dict.keys()))
start_sz = sizes[np.argmin(abs(sizes - start_sz))]
self.start_sz = start_sz
# if given ndf, allocate all layers with the same ndf
if ndf is None:
nfc = channel_dict
else:
nfc = {k: ndf for k, v in channel_dict.items()}
# for feature map discriminators with nfc not in channel_dict
# this is the case for the pretrained backbone (midas.pretrained)
if nc is not None and head is None:
nfc[start_sz] = nc
layers = []
# Head if the initial input is the full modality
if head:
layers += [conv2d(nc, nfc[256], 3, 1, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True)]
# Down Blocks
DB = partial(DownBlockPatch, separable=separable) if patch else partial(DownBlock, separable=separable)
while start_sz > end_sz:
layers.append(DB(nfc[start_sz], nfc[start_sz//2]))
start_sz = start_sz // 2
layers.append(conv2d(nfc[end_sz], 1, 4, 1, 0, bias=False))
self.main = nn.Sequential(*layers)
def forward(self, x, c):
return self.main(x)
class SingleDiscCond(nn.Module):
def __init__(self, nc=None, ndf=None, start_sz=256, end_sz=8, head=None, separable=False, patch=False, c_dim=1000, cmap_dim=64, embedding_dim=128):
super().__init__()
self.cmap_dim = cmap_dim
# midas channels
channel_dict = {4: 512, 8: 512, 16: 256, 32: 128, 64: 64, 128: 64,
256: 32, 512: 16, 1024: 8}
# interpolate for start sz that are not powers of two
if start_sz not in channel_dict.keys():
sizes = np.array(list(channel_dict.keys()))
start_sz = sizes[np.argmin(abs(sizes - start_sz))]
self.start_sz = start_sz
# if given ndf, allocate all layers with the same ndf
if ndf is None:
nfc = channel_dict
else:
nfc = {k: ndf for k, v in channel_dict.items()}
# for feature map discriminators with nfc not in channel_dict
# this is the case for the pretrained backbone (midas.pretrained)
if nc is not None and head is None:
nfc[start_sz] = nc
layers = []
# Head if the initial input is the full modality
if head:
layers += [conv2d(nc, nfc[256], 3, 1, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True)]
# Down Blocks
DB = partial(DownBlockPatch, separable=separable) if patch else partial(DownBlock, separable=separable)
while start_sz > end_sz:
layers.append(DB(nfc[start_sz], nfc[start_sz//2]))
start_sz = start_sz // 2
self.main = nn.Sequential(*layers)
# additions for conditioning on class information
self.cls = conv2d(nfc[end_sz], self.cmap_dim, 4, 1, 0, bias=False)
self.embed = nn.Embedding(num_embeddings=c_dim, embedding_dim=embedding_dim)
self.embed_proj = nn.Sequential(
nn.Linear(self.embed.embedding_dim, self.cmap_dim),
nn.LeakyReLU(0.2, inplace=True),
)
def forward(self, x, c):
h = self.main(x)
out = self.cls(h)
# conditioning via projection
cmap = self.embed_proj(self.embed(c.argmax(1))).unsqueeze(-1).unsqueeze(-1)
out = (out * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
return out
class MultiScaleD(nn.Module):
def __init__(
self,
channels,
resolutions,
num_discs=4,
proj_type=2, # 0 = no projection, 1 = cross channel mixing, 2 = cross scale mixing
cond=0,
separable=False,
patch=False,
**kwargs,
):
super().__init__()
assert num_discs in [1, 2, 3, 4]
# the first disc is on the lowest level of the backbone
self.disc_in_channels = channels[:num_discs]
self.disc_in_res = resolutions[:num_discs]
Disc = SingleDiscCond if cond else SingleDisc
mini_discs = []
for i, (cin, res) in enumerate(zip(self.disc_in_channels, self.disc_in_res)):
start_sz = res if not patch else 16
mini_discs += [str(i), Disc(nc=cin, start_sz=start_sz, end_sz=8, separable=separable, patch=patch)],
self.mini_discs = nn.ModuleDict(mini_discs)
def forward(self, features, c):
all_logits = []
for k, disc in self.mini_discs.items():
res = disc(features[k], c).view(features[k].size(0), -1)
all_logits.append(res)
all_logits = torch.cat(all_logits, dim=1)
return all_logits
class ProjectedDiscriminator(torch.nn.Module):
def __init__(
self,
diffaug=True,
interp224=True,
backbone_kwargs={},
**kwargs
):
super().__init__()
self.diffaug = diffaug
self.interp224 = interp224
self.feature_network = F_RandomProj(**backbone_kwargs)
self.discriminator = MultiScaleD(
channels=self.feature_network.CHANNELS,
resolutions=self.feature_network.RESOLUTIONS,
**backbone_kwargs,
)
def train(self, mode=True):
self.feature_network = self.feature_network.train(False)
self.discriminator = self.discriminator.train(mode)
return self
def eval(self):
return self.train(False)
def get_feature(self, x):
features = self.feature_network(x, get_features=True)
return features
def forward(self, x, c):
# if self.diffaug:
# x = DiffAugment(x, policy='color,translation,cutout')
# if self.interp224:
# x = F.interpolate(x, 224, mode='bilinear', align_corners=False)
features,backbone_features = self.feature_network(x)
logits = self.discriminator(features, c)
return logits,backbone_features
|