File size: 6,696 Bytes
a104d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from functools import partial
import numpy as np
import torch
import torch.nn as nn

from modules.layers.simswap.pg_modules.blocks import DownBlock, DownBlockPatch, conv2d
from modules.layers.simswap.pg_modules.projector import F_RandomProj
from modules.layers.simswap.pg_modules.diffaug import DiffAugment


class SingleDisc(nn.Module):
    def __init__(self, nc=None, ndf=None, start_sz=256, end_sz=8, head=None, separable=False, patch=False):
        super().__init__()
        channel_dict = {4: 512, 8: 512, 16: 256, 32: 128, 64: 64, 128: 64,
                        256: 32, 512: 16, 1024: 8}

        # interpolate for start sz that are not powers of two
        if start_sz not in channel_dict.keys():
            sizes = np.array(list(channel_dict.keys()))
            start_sz = sizes[np.argmin(abs(sizes - start_sz))]
        self.start_sz = start_sz

        # if given ndf, allocate all layers with the same ndf
        if ndf is None:
            nfc = channel_dict
        else:
            nfc = {k: ndf for k, v in channel_dict.items()}

        # for feature map discriminators with nfc not in channel_dict
        # this is the case for the pretrained backbone (midas.pretrained)
        if nc is not None and head is None:
            nfc[start_sz] = nc

        layers = []

        # Head if the initial input is the full modality
        if head:
            layers += [conv2d(nc, nfc[256], 3, 1, 1, bias=False),
                       nn.LeakyReLU(0.2, inplace=True)]

        # Down Blocks
        DB = partial(DownBlockPatch, separable=separable) if patch else partial(DownBlock, separable=separable)
        while start_sz > end_sz:
            layers.append(DB(nfc[start_sz],  nfc[start_sz//2]))
            start_sz = start_sz // 2

        layers.append(conv2d(nfc[end_sz], 1, 4, 1, 0, bias=False))
        self.main = nn.Sequential(*layers)

    def forward(self, x, c):
        return self.main(x)


class SingleDiscCond(nn.Module):
    def __init__(self, nc=None, ndf=None, start_sz=256, end_sz=8, head=None, separable=False, patch=False, c_dim=1000, cmap_dim=64, embedding_dim=128):
        super().__init__()
        self.cmap_dim = cmap_dim

        # midas channels
        channel_dict = {4: 512, 8: 512, 16: 256, 32: 128, 64: 64, 128: 64,
                        256: 32, 512: 16, 1024: 8}

        # interpolate for start sz that are not powers of two
        if start_sz not in channel_dict.keys():
            sizes = np.array(list(channel_dict.keys()))
            start_sz = sizes[np.argmin(abs(sizes - start_sz))]
        self.start_sz = start_sz

        # if given ndf, allocate all layers with the same ndf
        if ndf is None:
            nfc = channel_dict
        else:
            nfc = {k: ndf for k, v in channel_dict.items()}

        # for feature map discriminators with nfc not in channel_dict
        # this is the case for the pretrained backbone (midas.pretrained)
        if nc is not None and head is None:
            nfc[start_sz] = nc

        layers = []

        # Head if the initial input is the full modality
        if head:
            layers += [conv2d(nc, nfc[256], 3, 1, 1, bias=False),
                       nn.LeakyReLU(0.2, inplace=True)]

        # Down Blocks
        DB = partial(DownBlockPatch, separable=separable) if patch else partial(DownBlock, separable=separable)
        while start_sz > end_sz:
            layers.append(DB(nfc[start_sz],  nfc[start_sz//2]))
            start_sz = start_sz // 2
        self.main = nn.Sequential(*layers)

        # additions for conditioning on class information
        self.cls = conv2d(nfc[end_sz], self.cmap_dim, 4, 1, 0, bias=False)
        self.embed = nn.Embedding(num_embeddings=c_dim, embedding_dim=embedding_dim)
        self.embed_proj = nn.Sequential(
            nn.Linear(self.embed.embedding_dim, self.cmap_dim),
            nn.LeakyReLU(0.2, inplace=True),
        )

    def forward(self, x, c):
        h = self.main(x)
        out = self.cls(h)

        # conditioning via projection
        cmap = self.embed_proj(self.embed(c.argmax(1))).unsqueeze(-1).unsqueeze(-1)
        out = (out * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))

        return out


class MultiScaleD(nn.Module):
    def __init__(
        self,
        channels,
        resolutions,
        num_discs=4,
        proj_type=2,  # 0 = no projection, 1 = cross channel mixing, 2 = cross scale mixing
        cond=0,
        separable=False,
        patch=False,
        **kwargs,
    ):
        super().__init__()

        assert num_discs in [1, 2, 3, 4]

        # the first disc is on the lowest level of the backbone
        self.disc_in_channels = channels[:num_discs]
        self.disc_in_res = resolutions[:num_discs]
        Disc = SingleDiscCond if cond else SingleDisc

        mini_discs = []
        for i, (cin, res) in enumerate(zip(self.disc_in_channels, self.disc_in_res)):
            start_sz = res if not patch else 16
            mini_discs += [str(i), Disc(nc=cin, start_sz=start_sz, end_sz=8, separable=separable, patch=patch)],
        self.mini_discs = nn.ModuleDict(mini_discs)

    def forward(self, features, c):
        all_logits = []
        for k, disc in self.mini_discs.items():
            res = disc(features[k], c).view(features[k].size(0), -1)
            all_logits.append(res)

        all_logits = torch.cat(all_logits, dim=1)
        return all_logits


class ProjectedDiscriminator(torch.nn.Module):
    def __init__(
        self,
        diffaug=True,
        interp224=True,
        backbone_kwargs={},
        **kwargs
    ):
        super().__init__()
        self.diffaug = diffaug
        self.interp224 = interp224
        self.feature_network = F_RandomProj(**backbone_kwargs)
        self.discriminator = MultiScaleD(
            channels=self.feature_network.CHANNELS,
            resolutions=self.feature_network.RESOLUTIONS,
            **backbone_kwargs,
        )

    def train(self, mode=True):
        self.feature_network = self.feature_network.train(False)
        self.discriminator = self.discriminator.train(mode)
        return self

    def eval(self):
        return self.train(False)
    
    def get_feature(self, x):
        features = self.feature_network(x, get_features=True)
        return features

    def forward(self, x, c):
        # if self.diffaug:
        #     x = DiffAugment(x, policy='color,translation,cutout')

        # if self.interp224:
        #     x = F.interpolate(x, 224, mode='bilinear', align_corners=False)

        features,backbone_features = self.feature_network(x)
        logits = self.discriminator(features, c)

        return logits,backbone_features