Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 5,773 Bytes
			
			| 523fb10 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | import os
import platform
import torch
import torch.nn.functional as F
from torch.autograd import Function
from torch.utils.cpp_extension import load, _import_module_from_library
# if running GPEN without cuda, please comment line 10-18
if platform.system() == 'Linux' and torch.cuda.is_available():
    module_path = os.path.dirname(__file__)
    upfirdn2d_op = load(
        'upfirdn2d',
        sources=[
            os.path.join(module_path, 'upfirdn2d.cpp'),
            os.path.join(module_path, 'upfirdn2d_kernel.cu'),
        ],
    )
#upfirdn2d_op = _import_module_from_library('upfirdn2d', '/tmp/torch_extensions/upfirdn2d', True)
class UpFirDn2dBackward(Function):
    @staticmethod
    def forward(
        ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
    ):
        up_x, up_y = up
        down_x, down_y = down
        g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
        grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
        grad_input = upfirdn2d_op.upfirdn2d(
            grad_output,
            grad_kernel,
            down_x,
            down_y,
            up_x,
            up_y,
            g_pad_x0,
            g_pad_x1,
            g_pad_y0,
            g_pad_y1,
        )
        grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
        ctx.save_for_backward(kernel)
        pad_x0, pad_x1, pad_y0, pad_y1 = pad
        ctx.up_x = up_x
        ctx.up_y = up_y
        ctx.down_x = down_x
        ctx.down_y = down_y
        ctx.pad_x0 = pad_x0
        ctx.pad_x1 = pad_x1
        ctx.pad_y0 = pad_y0
        ctx.pad_y1 = pad_y1
        ctx.in_size = in_size
        ctx.out_size = out_size
        return grad_input
    @staticmethod
    def backward(ctx, gradgrad_input):
        kernel, = ctx.saved_tensors
        gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
        gradgrad_out = upfirdn2d_op.upfirdn2d(
            gradgrad_input,
            kernel,
            ctx.up_x,
            ctx.up_y,
            ctx.down_x,
            ctx.down_y,
            ctx.pad_x0,
            ctx.pad_x1,
            ctx.pad_y0,
            ctx.pad_y1,
        )
        # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
        gradgrad_out = gradgrad_out.view(
            ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
        )
        return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
    @staticmethod
    def forward(ctx, input, kernel, up, down, pad):
        up_x, up_y = up
        down_x, down_y = down
        pad_x0, pad_x1, pad_y0, pad_y1 = pad
        kernel_h, kernel_w = kernel.shape
        batch, channel, in_h, in_w = input.shape
        ctx.in_size = input.shape
        input = input.reshape(-1, in_h, in_w, 1)
        ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
        out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
        out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
        ctx.out_size = (out_h, out_w)
        ctx.up = (up_x, up_y)
        ctx.down = (down_x, down_y)
        ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
        g_pad_x0 = kernel_w - pad_x0 - 1
        g_pad_y0 = kernel_h - pad_y0 - 1
        g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
        g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
        ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
        out = upfirdn2d_op.upfirdn2d(
            input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
        )
        # out = out.view(major, out_h, out_w, minor)
        out = out.view(-1, channel, out_h, out_w)
        return out
    @staticmethod
    def backward(ctx, grad_output):
        kernel, grad_kernel = ctx.saved_tensors
        grad_input = UpFirDn2dBackward.apply(
            grad_output,
            kernel,
            grad_kernel,
            ctx.up,
            ctx.down,
            ctx.pad,
            ctx.g_pad,
            ctx.in_size,
            ctx.out_size,
        )
        return grad_input, None, None, None, None
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0), device='cpu'):
    if platform.system() == 'Linux' and torch.cuda.is_available() and device != 'cpu':
        out = UpFirDn2d.apply(
            input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
        )
    else:
        out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
    return out
def upfirdn2d_native(
    input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
):
    input = input.permute(0, 2, 3, 1)
    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape
    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)
    out = F.pad(
        out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
    )
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]
    out = out.permute(0, 3, 1, 2)
    out = out.reshape(
        [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
    )
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    # out = out.permute(0, 2, 3, 1)
    return out[:, :, ::down_y, ::down_x]
 |