Spaces:
Running
on
Zero
Running
on
Zero
Update stf/stf-api-alternative/src/stf_alternative/inference.py
Browse files
stf/stf-api-alternative/src/stf_alternative/inference.py
CHANGED
|
@@ -141,10 +141,10 @@ def process_audio_chunk(audio_processor, audio_encoder, audio_chunk, device):
|
|
| 141 |
|
| 142 |
input_values = audio_processor(
|
| 143 |
audio_data, sampling_rate=16000, return_tensors="pt"
|
| 144 |
-
).to(device)["input_values"]
|
| 145 |
|
| 146 |
-
with torch.no_grad():
|
| 147 |
-
|
| 148 |
|
| 149 |
return logits.last_hidden_state[0]
|
| 150 |
|
|
@@ -188,33 +188,35 @@ def to_img(t):
|
|
| 188 |
|
| 189 |
|
| 190 |
def inference_model(model, v, device, verbose=False):
|
| 191 |
-
with torch.no_grad():
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
|
|
|
|
|
|
| 218 |
|
| 219 |
|
| 220 |
def inference_model_remote(model, v, device, verbose=False):
|
|
|
|
| 141 |
|
| 142 |
input_values = audio_processor(
|
| 143 |
audio_data, sampling_rate=16000, return_tensors="pt"
|
| 144 |
+
).cuda(0))["input_values"] #//.to(device)["input_values"]
|
| 145 |
|
| 146 |
+
#with torch.no_grad():
|
| 147 |
+
logits = audio_encoder(input_values=input_values)
|
| 148 |
|
| 149 |
return logits.last_hidden_state[0]
|
| 150 |
|
|
|
|
| 188 |
|
| 189 |
|
| 190 |
def inference_model(model, v, device, verbose=False):
|
| 191 |
+
#with torch.no_grad():
|
| 192 |
+
mel, ips, mask, alpha = (
|
| 193 |
+
v["mel"],
|
| 194 |
+
v["ips"],
|
| 195 |
+
v["mask"],
|
| 196 |
+
v["img_gt_with_alpha"],
|
| 197 |
+
)
|
| 198 |
+
cpu_ips = ips
|
| 199 |
+
cpu_alpha = alpha
|
| 200 |
+
|
| 201 |
+
#audio = mel.to(device)
|
| 202 |
+
#ips = ips.to(device).permute(0, 3, 1, 2)
|
| 203 |
+
audio = mel.cuda(0)
|
| 204 |
+
ips = ips.cuda(0).permute(0, 3, 1, 2)
|
| 205 |
+
|
| 206 |
+
pred = model.model(ips, audio)
|
| 207 |
+
|
| 208 |
+
gen_face = to_img(pred)
|
| 209 |
+
|
| 210 |
+
return [
|
| 211 |
+
{
|
| 212 |
+
"pred": o,
|
| 213 |
+
"mask": mask[j].numpy(),
|
| 214 |
+
"ips": cpu_ips[j].numpy(),
|
| 215 |
+
"img_gt_with_alpha": cpu_alpha[j].numpy(),
|
| 216 |
+
"filename": v["filename"][j],
|
| 217 |
+
}
|
| 218 |
+
for j, o in enumerate(gen_face)
|
| 219 |
+
]
|
| 220 |
|
| 221 |
|
| 222 |
def inference_model_remote(model, v, device, verbose=False):
|