Spaces:
Running
on
Zero
Running
on
Zero
Update stf/stf-api-alternative/src/stf_alternative/inference.py
Browse files
stf/stf-api-alternative/src/stf_alternative/inference.py
CHANGED
@@ -141,10 +141,10 @@ def process_audio_chunk(audio_processor, audio_encoder, audio_chunk, device):
|
|
141 |
|
142 |
input_values = audio_processor(
|
143 |
audio_data, sampling_rate=16000, return_tensors="pt"
|
144 |
-
).to(device)["input_values"]
|
145 |
|
146 |
-
with torch.no_grad():
|
147 |
-
|
148 |
|
149 |
return logits.last_hidden_state[0]
|
150 |
|
@@ -188,33 +188,35 @@ def to_img(t):
|
|
188 |
|
189 |
|
190 |
def inference_model(model, v, device, verbose=False):
|
191 |
-
with torch.no_grad():
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
218 |
|
219 |
|
220 |
def inference_model_remote(model, v, device, verbose=False):
|
|
|
141 |
|
142 |
input_values = audio_processor(
|
143 |
audio_data, sampling_rate=16000, return_tensors="pt"
|
144 |
+
).cuda(0))["input_values"] #//.to(device)["input_values"]
|
145 |
|
146 |
+
#with torch.no_grad():
|
147 |
+
logits = audio_encoder(input_values=input_values)
|
148 |
|
149 |
return logits.last_hidden_state[0]
|
150 |
|
|
|
188 |
|
189 |
|
190 |
def inference_model(model, v, device, verbose=False):
|
191 |
+
#with torch.no_grad():
|
192 |
+
mel, ips, mask, alpha = (
|
193 |
+
v["mel"],
|
194 |
+
v["ips"],
|
195 |
+
v["mask"],
|
196 |
+
v["img_gt_with_alpha"],
|
197 |
+
)
|
198 |
+
cpu_ips = ips
|
199 |
+
cpu_alpha = alpha
|
200 |
+
|
201 |
+
#audio = mel.to(device)
|
202 |
+
#ips = ips.to(device).permute(0, 3, 1, 2)
|
203 |
+
audio = mel.cuda(0)
|
204 |
+
ips = ips.cuda(0).permute(0, 3, 1, 2)
|
205 |
+
|
206 |
+
pred = model.model(ips, audio)
|
207 |
+
|
208 |
+
gen_face = to_img(pred)
|
209 |
+
|
210 |
+
return [
|
211 |
+
{
|
212 |
+
"pred": o,
|
213 |
+
"mask": mask[j].numpy(),
|
214 |
+
"ips": cpu_ips[j].numpy(),
|
215 |
+
"img_gt_with_alpha": cpu_alpha[j].numpy(),
|
216 |
+
"filename": v["filename"][j],
|
217 |
+
}
|
218 |
+
for j, o in enumerate(gen_face)
|
219 |
+
]
|
220 |
|
221 |
|
222 |
def inference_model_remote(model, v, device, verbose=False):
|