Spaces:
Configuration error
Configuration error
| import open3d_zerogpu_fix | |
| import numpy as np | |
| from PIL import Image | |
| import gradio as gr | |
| import open3d as o3d | |
| import trimesh | |
| from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, EulerAncestralDiscreteScheduler | |
| import torch | |
| from collections import Counter | |
| import random | |
| import spaces | |
| pipe = None | |
| device = None | |
| torch_dtype = None | |
| def load_model(): | |
| global pipe, device, torch_dtype | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 if device == "cuda" else torch.float32 | |
| pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| "yeq6x/animagine_position_map", | |
| controlnet=ControlNetModel.from_pretrained("yeq6x/Image2PositionColor_v3"), | |
| ).to(device) | |
| pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| return pipe | |
| def convert_pil_to_opencv(pil_image): | |
| return np.array(pil_image) | |
| def inv_func(y, | |
| c = -712.380100, | |
| a = 137.375240, | |
| b = 192.435866): | |
| return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845 | |
| def create_point_cloud(img1, img2): | |
| if img1.shape != img2.shape: | |
| raise ValueError("Both images must have the same dimensions.") | |
| h, w, _ = img1.shape | |
| points = [] | |
| colors = [] | |
| for y in range(h): | |
| for x in range(w): | |
| # ピクセル位置 (x, y) のRGBをXYZとして取得 | |
| r, g, b = img1[y, x] | |
| r = inv_func(r) * 0.9 | |
| g = inv_func(g) / 1.7 * 0.6 | |
| b = inv_func(b) | |
| r *= 150 | |
| g *= 150 | |
| b *= 150 | |
| points.append([g, b, r]) # X, Y, Z | |
| # 対応するピクセル位置の画像2の色を取得 | |
| colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール | |
| return np.array(points), np.array(colors) | |
| def point_cloud_to_glb(points, colors): | |
| # Open3Dでポイントクラウドを作成 | |
| pc = o3d.geometry.PointCloud() | |
| pc.points = o3d.utility.Vector3dVector(points) | |
| pc.colors = o3d.utility.Vector3dVector(colors) | |
| # 一時的にPLY形式で保存 | |
| temp_ply_file = "temp_output.ply" | |
| o3d.io.write_point_cloud(temp_ply_file, pc) | |
| # PLYをGLBに変換 | |
| mesh = trimesh.load(temp_ply_file) | |
| glb_file = "output.glb" | |
| mesh.export(glb_file) | |
| return glb_file | |
| def visualize_3d(image1, image2): | |
| print("Processing...") | |
| # PIL画像をOpenCV形式に変換 | |
| img1 = convert_pil_to_opencv(image1) | |
| img2 = convert_pil_to_opencv(image2) | |
| # ポイントクラウド生成 | |
| points, colors = create_point_cloud(img1, img2) | |
| # GLB形式に変換 | |
| glb_file = point_cloud_to_glb(points, colors) | |
| return glb_file | |
| def scale_image(original_image): | |
| aspect_ratio = original_image.width / original_image.height | |
| if original_image.width > original_image.height: | |
| new_width = 1024 | |
| new_height = round(new_width / aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| new_width = round(new_height * aspect_ratio) | |
| resized_original = original_image.resize((new_width, new_height), Image.LANCZOS) | |
| return resized_original | |
| def get_edge_mode_color(img, edge_width=10): | |
| # 外周の10ピクセル領域を取得 | |
| left = img.crop((0, 0, edge_width, img.height)) # 左端 | |
| right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端 | |
| top = img.crop((0, 0, img.width, edge_width)) # 上端 | |
| bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端 | |
| # 各領域のピクセルデータを取得して結合 | |
| colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata()) | |
| # 最頻値(mode)を計算 | |
| mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得 | |
| return mode_color | |
| def paste_image(resized_img): | |
| # 外周10pxの最頻値を背景色に設定 | |
| mode_color = get_edge_mode_color(resized_img, edge_width=10) | |
| mode_background = Image.new("RGBA", (1024, 1024), mode_color) | |
| mode_background = mode_background.convert('RGB') | |
| x = (1024 - resized_img.width) // 2 | |
| y = (1024 - resized_img.height) // 2 | |
| mode_background.paste(resized_img, (x, y)) | |
| return mode_background | |
| def outpaint_image(image): | |
| if type(image) == type(None): | |
| return None | |
| resized_img = scale_image(image) | |
| image = paste_image(resized_img) | |
| return image | |
| def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale): | |
| print("predict position map") | |
| global pipe | |
| generator = torch.Generator() | |
| generator.manual_seed(random.randint(0, 2147483647)) | |
| image = pipe( | |
| prompt, | |
| prompt, | |
| cond_image, | |
| negative_prompt=negative_prompt, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=8, | |
| num_inference_steps=20, | |
| generator=generator, | |
| guess_mode = True, | |
| controlnet_conditioning_scale = controlnet_conditioning_scale, | |
| ).images[0] | |
| return image | |
| load_model() | |
| # Gradioアプリケーション | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Position Map Visualizer") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| img1 = gr.Image(type="pil", label="color Image", height=300) | |
| img2 = gr.Image(type="pil", label="map Image", height=300) | |
| prompt = gr.Textbox("position map, 1girl, solo, white background, simple background", label="Prompt") | |
| negative_prompt = gr.Textbox("lowres, bad anatomy, bad hands, bad feet, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry", label="Negative Prompt") | |
| controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=0.6, step=0.05) | |
| predict_map_btn = gr.Button("Predict Position Map") | |
| visualize_3d_btn = gr.Button("Generate 3D Point Cloud") | |
| with gr.Column(): | |
| reconstruction_output = gr.Model3D(label="3D Viewer", height=600) | |
| gr.Examples( | |
| examples=[ | |
| ["resources/source/000006.png", "resources/target/000006.png"], | |
| ["resources/source/006420.png", "resources/target/006420.png"], | |
| ], | |
| inputs=[img1, img2] | |
| ) | |
| img1.input(outpaint_image, inputs=img1, outputs=img1) | |
| predict_map_btn.click(predict_image, inputs=[img1, prompt, negative_prompt, controlnet_conditioning_scale], outputs=img2) | |
| visualize_3d_btn.click(visualize_3d, inputs=[img2, img1], outputs=reconstruction_output) | |
| demo.launch() | |