Spaces:
Configuration error
Configuration error
| import spaces | |
| from diffusers import ControlNetModel | |
| from diffusers import StableDiffusionXLControlNetPipeline | |
| from diffusers import EulerAncestralDiscreteScheduler | |
| from PIL import Image | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| import gradio as gr | |
| from torchvision import transforms | |
| from controlnet_aux import OpenposeDetector | |
| ratios_map = { | |
| 0.5:{"width":704,"height":1408}, | |
| 0.57:{"width":768,"height":1344}, | |
| 0.68:{"width":832,"height":1216}, | |
| 0.72:{"width":832,"height":1152}, | |
| 0.78:{"width":896,"height":1152}, | |
| 0.82:{"width":896,"height":1088}, | |
| 0.88:{"width":960,"height":1088}, | |
| 0.94:{"width":960,"height":1024}, | |
| 1.00:{"width":1024,"height":1024}, | |
| 1.13:{"width":1088,"height":960}, | |
| 1.21:{"width":1088,"height":896}, | |
| 1.29:{"width":1152,"height":896}, | |
| 1.38:{"width":1152,"height":832}, | |
| 1.46:{"width":1216,"height":832}, | |
| 1.67:{"width":1280,"height":768}, | |
| 1.75:{"width":1344,"height":768}, | |
| 2.00:{"width":1408,"height":704} | |
| } | |
| ratios = np.array(list(ratios_map.keys())) | |
| openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') | |
| controlnet = ControlNetModel.from_pretrained( | |
| "yeq6x/Image2PositionColor_v3", | |
| torch_dtype=torch.float16 | |
| ).to('cuda') | |
| pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| "yeq6x/animagine_position_map", | |
| controlnet=controlnet, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| offload_state_dict=True, | |
| ).to('cuda').to(torch.float16) | |
| pipe.scheduler = EulerAncestralDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| num_train_timesteps=1000, | |
| steps_offset=1 | |
| ) | |
| # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7) | |
| # pipe.enable_xformers_memory_efficient_attention() | |
| pipe.force_zeros_for_empty_prompt = False | |
| def get_size(init_image): | |
| w,h=init_image.size | |
| curr_ratio = w/h | |
| ind = np.argmin(np.abs(curr_ratio-ratios)) | |
| ratio = ratios[ind] | |
| chosen_ratio = ratios_map[ratio] | |
| w,h = chosen_ratio['width'], chosen_ratio['height'] | |
| return w,h | |
| def resize_image(image): | |
| image = image.convert('RGB') | |
| w,h = get_size(image) | |
| resized_image = image.resize((w, h)) | |
| return resized_image | |
| def resize_image_old(image): | |
| image = image.convert('RGB') | |
| current_size = image.size | |
| if current_size[0] > current_size[1]: | |
| center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) | |
| else: | |
| center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) | |
| resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) | |
| return resized_image | |
| def generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed): | |
| generator = torch.Generator("cuda").manual_seed(seed) | |
| images = pipe( | |
| prompt, negative_prompt=negative_prompt, image=pose_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
| generator=generator, height=input_image.size[1], width=input_image.size[0], | |
| ).images | |
| return images | |
| def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): | |
| # resize input_image to 1024x1024 | |
| input_image = resize_image(input_image) | |
| pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True) | |
| images = generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed) | |
| return [pose_image,images[0]] | |
| # @spaces.GPU | |
| # def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale): | |
| # print("predict position map") | |
| # global pipe | |
| # generator = torch.Generator() | |
| # generator.manual_seed(random.randint(0, 2147483647)) | |
| # image = pipe( | |
| # prompt, | |
| # negative_prompt=negative_prompt, | |
| # image = cond_image, | |
| # width=1024, | |
| # height=1024, | |
| # guidance_scale=8, | |
| # num_inference_steps=20, | |
| # generator=generator, | |
| # guess_mode = True, | |
| # controlnet_conditioning_scale = controlnet_conditioning_scale | |
| # ).images[0] | |
| # return image | |
| # def convert_pil_to_opencv(pil_image): | |
| # return np.array(pil_image) | |
| # def inv_func(y, | |
| # c = -712.380100, | |
| # a = 137.375240, | |
| # b = 192.435866): | |
| # return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845 | |
| # def create_point_cloud(img1, img2): | |
| # if img1.shape != img2.shape: | |
| # raise ValueError("Both images must have the same dimensions.") | |
| # h, w, _ = img1.shape | |
| # points = [] | |
| # colors = [] | |
| # for y in range(h): | |
| # for x in range(w): | |
| # # ピクセル位置 (x, y) のRGBをXYZとして取得 | |
| # r, g, b = img1[y, x] | |
| # r = inv_func(r) * 0.9 | |
| # g = inv_func(g) / 1.7 * 0.6 | |
| # b = inv_func(b) | |
| # r *= 150 | |
| # g *= 150 | |
| # b *= 150 | |
| # points.append([g, b, r]) # X, Y, Z | |
| # # 対応するピクセル位置の画像2の色を取得 | |
| # colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール | |
| # return np.array(points), np.array(colors) | |
| # def point_cloud_to_glb(points, colors): | |
| # # Open3Dでポイントクラウドを作成 | |
| # pc = o3d.geometry.PointCloud() | |
| # pc.points = o3d.utility.Vector3dVector(points) | |
| # pc.colors = o3d.utility.Vector3dVector(colors) | |
| # # 一時的にPLY形式で保存 | |
| # temp_ply_file = "temp_output.ply" | |
| # o3d.io.write_point_cloud(temp_ply_file, pc) | |
| # # PLYをGLBに変換 | |
| # mesh = trimesh.load(temp_ply_file) | |
| # glb_file = "output.glb" | |
| # mesh.export(glb_file) | |
| # return glb_file | |
| # def visualize_3d(image1, image2): | |
| # print("Processing...") | |
| # # PIL画像をOpenCV形式に変換 | |
| # img1 = convert_pil_to_opencv(image1) | |
| # img2 = convert_pil_to_opencv(image2) | |
| # # ポイントクラウド生成 | |
| # points, colors = create_point_cloud(img1, img2) | |
| # # GLB形式に変換 | |
| # glb_file = point_cloud_to_glb(points, colors) | |
| # return glb_file | |
| # def scale_image(original_image): | |
| # aspect_ratio = original_image.width / original_image.height | |
| # if original_image.width > original_image.height: | |
| # new_width = 1024 | |
| # new_height = round(new_width / aspect_ratio) | |
| # else: | |
| # new_height = 1024 | |
| # new_width = round(new_height * aspect_ratio) | |
| # resized_original = original_image.resize((new_width, new_height), Image.LANCZOS) | |
| # return resized_original | |
| # def get_edge_mode_color(img, edge_width=10): | |
| # # 外周の10ピクセル領域を取得 | |
| # left = img.crop((0, 0, edge_width, img.height)) # 左端 | |
| # right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端 | |
| # top = img.crop((0, 0, img.width, edge_width)) # 上端 | |
| # bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端 | |
| # # 各領域のピクセルデータを取得して結合 | |
| # colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata()) | |
| # # 最頻値(mode)を計算 | |
| # mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得 | |
| # return mode_color | |
| # def paste_image(resized_img): | |
| # # 外周10pxの最頻値を背景色に設定 | |
| # mode_color = get_edge_mode_color(resized_img, edge_width=10) | |
| # mode_background = Image.new("RGBA", (1024, 1024), mode_color) | |
| # mode_background = mode_background.convert('RGB') | |
| # x = (1024 - resized_img.width) // 2 | |
| # y = (1024 - resized_img.height) // 2 | |
| # mode_background.paste(resized_img, (x, y)) | |
| # return mode_background | |
| # def outpaint_image(image): | |
| # if type(image) == type(None): | |
| # return None | |
| # resized_img = scale_image(image) | |
| # image = paste_image(resized_img) | |
| # return image | |
| block = gr.Blocks().queue() | |
| with block: | |
| gr.Markdown("## BRIA 2.3 ControlNet Pose") | |
| gr.HTML(''' | |
| <p style="margin-bottom: 10px; font-size: 94%"> | |
| This is a demo for ControlNet Pose that using | |
| <a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">BRIA 2.3 text-to-image model</a> as backbone. | |
| Trained on licensed data, BRIA 2.3 provide full legal liability coverage for copyright and privacy infringement. | |
| </p> | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam | |
| prompt = gr.Textbox(label="Prompt") | |
| negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") | |
| num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1) | |
| controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) | |
| run_button = gr.Button(value="Run") | |
| with gr.Column(): | |
| with gr.Row(): | |
| pose_image_output = gr.Image(label="Pose Image", type="pil", interactive=False) | |
| generated_image_output = gr.Image(label="Generated Image", type="pil", interactive=False) | |
| ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] | |
| run_button.click(fn=process, inputs=ips, outputs=[pose_image_output, generated_image_output]) | |
| block.launch(debug = True) |