Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import mediapipe as mp
|
3 |
+
from mediapipe.tasks import python
|
4 |
+
from mediapipe.tasks.python import vision
|
5 |
+
from mediapipe.framework.formats import landmark_pb2
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# Mediapipe FaceLandmarker seçeneklerini belirleyin
|
10 |
+
base_options = python.BaseOptions(model_asset_path='c:\\face_landmarker.task')
|
11 |
+
options = vision.FaceLandmarkerOptions(
|
12 |
+
base_options=base_options,
|
13 |
+
output_face_blendshapes=True,
|
14 |
+
output_facial_transformation_matrixes=True,
|
15 |
+
num_faces=1
|
16 |
+
)
|
17 |
+
detector = vision.FaceLandmarker.create_from_options(options)
|
18 |
+
|
19 |
+
# Landmark noktalarını çizmek için fonksiyon
|
20 |
+
def draw_landmarks_on_image(rgb_image, detection_result):
|
21 |
+
face_landmarks_list = detection_result.face_landmarks
|
22 |
+
annotated_image = np.copy(rgb_image)
|
23 |
+
|
24 |
+
for idx in range(len(face_landmarks_list)):
|
25 |
+
face_landmarks = face_landmarks_list[idx]
|
26 |
+
face_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
|
27 |
+
face_landmarks_proto.landmark.extend([
|
28 |
+
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks
|
29 |
+
])
|
30 |
+
|
31 |
+
mp.solutions.drawing_utils.draw_landmarks(
|
32 |
+
image=annotated_image,
|
33 |
+
landmark_list=face_landmarks_proto,
|
34 |
+
connections=mp.solutions.face_mesh.FACEMESH_TESSELATION,
|
35 |
+
landmark_drawing_spec=None,
|
36 |
+
connection_drawing_spec=mp.solutions.drawing_styles
|
37 |
+
.get_default_face_mesh_tesselation_style())
|
38 |
+
mp.solutions.drawing_utils.draw_landmarks(
|
39 |
+
image=annotated_image,
|
40 |
+
landmark_list=face_landmarks_proto,
|
41 |
+
connections=mp.solutions.face_mesh.FACEMESH_CONTOURS,
|
42 |
+
landmark_drawing_spec=None,
|
43 |
+
connection_drawing_spec=mp.solutions.drawing_styles
|
44 |
+
.get_default_face_mesh_contours_style())
|
45 |
+
mp.solutions.drawing_utils.draw_landmarks(
|
46 |
+
image=annotated_image,
|
47 |
+
landmark_list=face_landmarks_proto,
|
48 |
+
connections=mp.solutions.face_mesh.FACEMESH_IRISES,
|
49 |
+
landmark_drawing_spec=None,
|
50 |
+
connection_drawing_spec=mp.solutions.drawing_styles
|
51 |
+
.get_default_face_mesh_iris_connections_style())
|
52 |
+
return annotated_image
|
53 |
+
|
54 |
+
# Gradio için gerçek zamanlı video akışı işleme fonksiyonu
|
55 |
+
def process_frame(frame):
|
56 |
+
# OpenCV görüntüsünü Mediapipe formatına dönüştür
|
57 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
58 |
+
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
|
59 |
+
|
60 |
+
# Yüz yer işaretlerini algıla
|
61 |
+
detection_result = detector.detect(mp_image)
|
62 |
+
|
63 |
+
# Çerçeveyi güncelle
|
64 |
+
if detection_result.face_blendshapes:
|
65 |
+
# İlk yüzün blendshape skorlarını al
|
66 |
+
face_blendshapes = detection_result.face_blendshapes[0]
|
67 |
+
|
68 |
+
# eyeBlinkLeft ve eyeBlinkRight blendshape skorlarını bul
|
69 |
+
blink_left = next((bs.score for bs in face_blendshapes if bs.category_name == "eyeBlinkLeft"), 0)
|
70 |
+
blink_right = next((bs.score for bs in face_blendshapes if bs.category_name == "eyeBlinkRight"), 0)
|
71 |
+
|
72 |
+
# Göz durumunu belirle
|
73 |
+
left_eye_status = "Kapalı" if blink_left > 0.5 else "Açık"
|
74 |
+
right_eye_status = "Kapalı" if blink_right > 0.5 else "Açık"
|
75 |
+
|
76 |
+
# Landmarkları çizin
|
77 |
+
annotated_image = draw_landmarks_on_image(rgb_frame, detection_result)
|
78 |
+
|
79 |
+
# # Çerçeveye göz durumunu yaz
|
80 |
+
# cv2.putText(annotated_image, f"Sol Goz: {left_eye_status}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
81 |
+
# cv2.putText(annotated_image, f"Sag Goz: {right_eye_status}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
82 |
+
|
83 |
+
return cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR), left_eye_status, right_eye_status
|
84 |
+
else:
|
85 |
+
return frame, "Göz Tespiti Yok", "Göz Tespiti Yok"
|
86 |
+
|
87 |
+
# Gradio arayüzü
|
88 |
+
def video_feed():
|
89 |
+
cap = cv2.VideoCapture(0)
|
90 |
+
while True:
|
91 |
+
success, frame = cap.read()
|
92 |
+
if not success:
|
93 |
+
break
|
94 |
+
|
95 |
+
frame, left_eye_status, right_eye_status = process_frame(frame)
|
96 |
+
yield frame, left_eye_status, right_eye_status
|
97 |
+
|
98 |
+
iface = gr.Interface(fn=video_feed,
|
99 |
+
inputs=None, # Giriş yok, sadece video akışı
|
100 |
+
outputs=[gr.Image(type="numpy", label="Yüz Tespiti Sonucu"),
|
101 |
+
gr.Textbox(label="Sol Göz Durumu"),
|
102 |
+
gr.Textbox(label="Sağ Göz Durumu")],
|
103 |
+
live=True)
|
104 |
+
|
105 |
+
# Gradio arayüzünü başlat
|
106 |
+
iface.launch(share=True)
|