# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import nncore from torch.utils.data import Dataset from videomind.dataset.hybrid import DATASETS from videomind.utils.parser import parse_query, parse_question @DATASETS.register(name='lvbench') class LVBenchDataset(Dataset): ANNO_PATH = 'data/lvbench/LVBench/video_info.meta.jsonl' VIDEO_ROOT = 'data/lvbench/videos_3fps_480_noaudio' @classmethod def load_annos(self, split='test'): assert split == 'test' raw_annos = nncore.load(self.ANNO_PATH) annos = [] for raw_anno in raw_annos: vid = raw_anno['key'] for meta in raw_anno['qa']: tok = meta['question'].split('\n') assert len(tok) == 5 assert all(any(o.startswith(k) for k in ('(A) ', '(B) ', '(C) ', '(D) ')) for o in tok[1:]) options = [o[4:] for o in tok[1:]] ans = meta['answer'] answer = options[ord(ans) - ord('A')] assert ans in 'ABCD' anno = dict( source='lvbench', data_type='multimodal', video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), query=parse_query(tok[0]), question=parse_question(tok[0]), options=options, answer=answer, ans=ans, task=meta['question_type'], time_reference=meta['time_reference']) annos.append(anno) return annos