# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import warnings import nncore import torch import torch.nn as nn from peft import PeftModel from safetensors.torch import load_model from transformers import AutoConfig, AutoModel, AutoProcessor, GenerationConfig, Qwen2VLForConditionalGeneration def get_auto_device(device): try: import torch_npu has_npu = torch_npu.npu.is_available() except ImportError: has_npu = False return 'cuda' if torch.cuda.is_available() else 'npu' if has_npu else 'cpu' def build_model(model_path, config=None, is_trainable=False, merge_adapter=False, device='auto', dtype=torch.float16): # set do_resize to false to avoid duplicated resizing # https://github.com/huggingface/transformers/tree/main/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py processor = AutoProcessor.from_pretrained(model_path, do_resize=False) # eager attention has known & unknown bugs # [4.46.2] broken causality fp16: https://github.com/huggingface/transformers/issues/35151 # [4.48.1] broken sliding window: https://github.com/huggingface/transformers/issues/35924 attn_implementation = 'sdpa' config = config or AutoConfig.from_pretrained(model_path) adapter_path = nncore.join(model_path, getattr(config, 'role', 'unknown')) partial_path = nncore.join(model_path, 'pytorch_model.safetensors') if nncore.is_dir(adapter_path) or nncore.is_file(partial_path): print(f'Loading base model from {config.base_model_path}...') model = AutoModel.from_pretrained( config.base_model_path, config=config, low_cpu_mem_usage=True, ignore_mismatched_sizes=True, attn_implementation=attn_implementation, torch_dtype=dtype) try: model.generation_config = GenerationConfig.from_pretrained(model_path) except OSError: warnings.warn('generation_config.json not found') meta_state_dict = { n: torch.empty_like(p, device='cpu') for n, p in model.named_parameters() if p.device == torch.device('meta') } model.load_state_dict(meta_state_dict, strict=False, assign=True) size = (model.model.embed_tokens.num_embeddings, model.model.embed_tokens.embedding_dim) if model.model.embed_tokens.weight.size() != size: print(f'Resizing embed_tokens to {size}...') model.model.embed_tokens.weight = nn.Parameter(model.model.embed_tokens.weight.new_empty(size)) size = (model.lm_head.out_features, model.lm_head.in_features) if model.lm_head.weight.size() != size: print(f'Resizing lm_head to {size}...') model.lm_head.weight = nn.Parameter(model.lm_head.weight.new_empty(size)) if nncore.is_dir(adapter_path): print(f'Loading adapter from {adapter_path}...') # transformers integration does not support merge_and_unload, use peft instead model = PeftModel.from_pretrained( model, adapter_path, adapter_name=config.role, is_trainable=is_trainable, low_cpu_mem_usage=True, torch_device=str(model.device)) if nncore.is_file(partial_path): print(f'Loading state dict from {partial_path}...') _, unexpected = load_model(model, partial_path, strict=False, device=str(model.device)) assert len(unexpected) == 0, f'unexpected parameters: {unexpected}' if merge_adapter and nncore.is_dir(adapter_path): print('Merging adapter and unloading...') model = model.merge_and_unload() model._hf_peft_config_loaded = False else: print(f'Loading full model from {model_path}...') if len(config.architectures) == 1 and config.model_type == 'qwen2_vl': model_cls = Qwen2VLForConditionalGeneration else: model_cls = AutoModel model = model_cls.from_pretrained( model_path, config=config, low_cpu_mem_usage=True, attn_implementation=attn_implementation, torch_dtype=dtype) if not is_trainable: device = get_auto_device(device) if device == 'auto' else device model = model.to(device).eval() return model, processor