Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,13 @@ import os
|
|
6 |
import random
|
7 |
import time
|
8 |
from functools import partial
|
9 |
-
from threading import Thread
|
10 |
|
11 |
import gradio as gr
|
12 |
import nncore
|
13 |
-
import spaces
|
14 |
import torch
|
15 |
from huggingface_hub import snapshot_download
|
16 |
-
from transformers import TextIteratorStreamer
|
17 |
|
|
|
18 |
from videomind.constants import GROUNDER_PROMPT, PLANNER_PROMPT, VERIFIER_PROMPT
|
19 |
from videomind.dataset.utils import process_vision_info
|
20 |
from videomind.model.builder import build_model
|
@@ -63,43 +61,6 @@ function init() {
|
|
63 |
"""
|
64 |
|
65 |
|
66 |
-
class CustomStreamer(TextIteratorStreamer):
|
67 |
-
|
68 |
-
def put(self, value):
|
69 |
-
if len(value.shape) > 1 and value.shape[0] > 1:
|
70 |
-
raise ValueError('TextStreamer only supports batch size 1')
|
71 |
-
elif len(value.shape) > 1:
|
72 |
-
value = value[0]
|
73 |
-
|
74 |
-
if self.skip_prompt and self.next_tokens_are_prompt:
|
75 |
-
self.next_tokens_are_prompt = False
|
76 |
-
return
|
77 |
-
|
78 |
-
self.token_cache.extend(value.tolist())
|
79 |
-
|
80 |
-
# force skipping eos token
|
81 |
-
if self.token_cache[-1] == self.tokenizer.eos_token_id:
|
82 |
-
self.token_cache = self.token_cache[:-1]
|
83 |
-
|
84 |
-
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
|
85 |
-
|
86 |
-
# cache decoded text for future use
|
87 |
-
self.text_cache = text
|
88 |
-
|
89 |
-
if text.endswith('\n'):
|
90 |
-
printable_text = text[self.print_len:]
|
91 |
-
self.token_cache = []
|
92 |
-
self.print_len = 0
|
93 |
-
elif len(text) > 0 and self._is_chinese_char(ord(text[-1])):
|
94 |
-
printable_text = text[self.print_len:]
|
95 |
-
self.print_len += len(printable_text)
|
96 |
-
else:
|
97 |
-
printable_text = text[self.print_len:text.rfind(' ') + 1]
|
98 |
-
self.print_len += len(printable_text)
|
99 |
-
|
100 |
-
self.on_finalized_text(printable_text)
|
101 |
-
|
102 |
-
|
103 |
def seconds_to_hms(seconds):
|
104 |
hours, remainder = divmod(round(seconds), 3600)
|
105 |
minutes, seconds = divmod(remainder, 60)
|
@@ -128,7 +89,7 @@ def reset_components():
|
|
128 |
|
129 |
|
130 |
@spaces.GPU
|
131 |
-
def main(video, prompt, role, temperature, max_new_tokens, model, processor,
|
132 |
history = []
|
133 |
|
134 |
if not video:
|
@@ -204,9 +165,8 @@ def main(video, prompt, role, temperature, max_new_tokens, model, processor, str
|
|
204 |
model.base_model.enable_adapter_layers()
|
205 |
model.set_adapter('planner')
|
206 |
|
207 |
-
|
208 |
**data,
|
209 |
-
streamer=streamer,
|
210 |
do_sample=temperature > 0,
|
211 |
temperature=temperature if temperature > 0 else None,
|
212 |
top_p=None,
|
@@ -214,15 +174,18 @@ def main(video, prompt, role, temperature, max_new_tokens, model, processor, str
|
|
214 |
repetition_penalty=None,
|
215 |
max_new_tokens=max_new_tokens)
|
216 |
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
if text and not skipped:
|
223 |
history[-1]['content'] = history[-1]['content'].rstrip('.')
|
224 |
-
|
225 |
-
|
|
|
226 |
yield history
|
227 |
|
228 |
elapsed_time = round(time.perf_counter() - start_time, 1)
|
@@ -230,7 +193,7 @@ def main(video, prompt, role, temperature, max_new_tokens, model, processor, str
|
|
230 |
yield history
|
231 |
|
232 |
try:
|
233 |
-
parsed = json.loads(
|
234 |
action = parsed[0] if isinstance(parsed, list) else parsed
|
235 |
if action['type'].lower() == 'grounder' and action['value']:
|
236 |
query = action['value']
|
@@ -301,9 +264,8 @@ def main(video, prompt, role, temperature, max_new_tokens, model, processor, str
|
|
301 |
model.base_model.enable_adapter_layers()
|
302 |
model.set_adapter('grounder')
|
303 |
|
304 |
-
|
305 |
**data,
|
306 |
-
streamer=streamer,
|
307 |
do_sample=temperature > 0,
|
308 |
temperature=temperature if temperature > 0 else None,
|
309 |
top_p=None,
|
@@ -311,15 +273,18 @@ def main(video, prompt, role, temperature, max_new_tokens, model, processor, str
|
|
311 |
repetition_penalty=None,
|
312 |
max_new_tokens=max_new_tokens)
|
313 |
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
if text and not skipped:
|
320 |
history[-1]['content'] = history[-1]['content'].rstrip('.')
|
321 |
-
|
322 |
-
|
|
|
323 |
yield history
|
324 |
|
325 |
elapsed_time = round(time.perf_counter() - start_time, 1)
|
@@ -520,9 +485,8 @@ def main(video, prompt, role, temperature, max_new_tokens, model, processor, str
|
|
520 |
data = data.to(device)
|
521 |
|
522 |
with model.disable_adapter():
|
523 |
-
|
524 |
**data,
|
525 |
-
streamer=streamer,
|
526 |
do_sample=temperature > 0,
|
527 |
temperature=temperature if temperature > 0 else None,
|
528 |
top_p=None,
|
@@ -530,25 +494,28 @@ def main(video, prompt, role, temperature, max_new_tokens, model, processor, str
|
|
530 |
repetition_penalty=None,
|
531 |
max_new_tokens=max_new_tokens)
|
532 |
|
533 |
-
|
534 |
-
|
|
|
|
|
|
|
535 |
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
history[-1]['content'] = history[-1]['content'].rstrip('.')
|
540 |
-
skipped = True
|
541 |
history[-1]['content'] += text
|
542 |
-
|
|
|
|
|
543 |
|
544 |
elapsed_time = round(time.perf_counter() - start_time, 1)
|
545 |
history[-1]['metadata']['title'] += f' ({elapsed_time} seconds)'
|
546 |
yield history
|
547 |
|
548 |
if 'gnd' in role and do_grounding:
|
549 |
-
response = f'After zooming in and analyzing the target moment, I finalize my answer: <span style="color:green">{
|
550 |
else:
|
551 |
-
response = f'After watching the whole video, my answer is: <span style="color:green">{
|
552 |
|
553 |
history.append({'role': 'assistant', 'content': ''})
|
554 |
for i, text in enumerate(response.split(' ')):
|
@@ -572,11 +539,9 @@ if __name__ == '__main__':
|
|
572 |
print('Initializing role *verifier*')
|
573 |
model.load_adapter(nncore.join(MODEL, 'verifier'), adapter_name='verifier')
|
574 |
|
575 |
-
streamer = CustomStreamer(processor.tokenizer, skip_prompt=True)
|
576 |
-
|
577 |
device = next(model.parameters()).device
|
578 |
|
579 |
-
main = partial(main, model=model, processor=processor,
|
580 |
|
581 |
path = os.path.dirname(os.path.realpath(__file__))
|
582 |
|
|
|
6 |
import random
|
7 |
import time
|
8 |
from functools import partial
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
import nncore
|
|
|
12 |
import torch
|
13 |
from huggingface_hub import snapshot_download
|
|
|
14 |
|
15 |
+
import spaces
|
16 |
from videomind.constants import GROUNDER_PROMPT, PLANNER_PROMPT, VERIFIER_PROMPT
|
17 |
from videomind.dataset.utils import process_vision_info
|
18 |
from videomind.model.builder import build_model
|
|
|
61 |
"""
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def seconds_to_hms(seconds):
|
65 |
hours, remainder = divmod(round(seconds), 3600)
|
66 |
minutes, seconds = divmod(remainder, 60)
|
|
|
89 |
|
90 |
|
91 |
@spaces.GPU
|
92 |
+
def main(video, prompt, role, temperature, max_new_tokens, model, processor, device):
|
93 |
history = []
|
94 |
|
95 |
if not video:
|
|
|
165 |
model.base_model.enable_adapter_layers()
|
166 |
model.set_adapter('planner')
|
167 |
|
168 |
+
output_ids = model.generate(
|
169 |
**data,
|
|
|
170 |
do_sample=temperature > 0,
|
171 |
temperature=temperature if temperature > 0 else None,
|
172 |
top_p=None,
|
|
|
174 |
repetition_penalty=None,
|
175 |
max_new_tokens=max_new_tokens)
|
176 |
|
177 |
+
assert data.input_ids.size(0) == output_ids.size(0) == 1
|
178 |
+
output_ids = output_ids[0, data.input_ids.size(1):]
|
179 |
+
if output_ids[-1] == processor.tokenizer.eos_token_id:
|
180 |
+
output_ids = output_ids[:-1]
|
181 |
+
response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
|
182 |
|
183 |
+
for i, text in enumerate(response.split(' ')):
|
184 |
+
if i == 0:
|
|
|
185 |
history[-1]['content'] = history[-1]['content'].rstrip('.')
|
186 |
+
history[-1]['content'] += text
|
187 |
+
else:
|
188 |
+
history[-1]['content'] += ' ' + text
|
189 |
yield history
|
190 |
|
191 |
elapsed_time = round(time.perf_counter() - start_time, 1)
|
|
|
193 |
yield history
|
194 |
|
195 |
try:
|
196 |
+
parsed = json.loads(response)
|
197 |
action = parsed[0] if isinstance(parsed, list) else parsed
|
198 |
if action['type'].lower() == 'grounder' and action['value']:
|
199 |
query = action['value']
|
|
|
264 |
model.base_model.enable_adapter_layers()
|
265 |
model.set_adapter('grounder')
|
266 |
|
267 |
+
output_ids = model.generate(
|
268 |
**data,
|
|
|
269 |
do_sample=temperature > 0,
|
270 |
temperature=temperature if temperature > 0 else None,
|
271 |
top_p=None,
|
|
|
273 |
repetition_penalty=None,
|
274 |
max_new_tokens=max_new_tokens)
|
275 |
|
276 |
+
assert data.input_ids.size(0) == output_ids.size(0) == 1
|
277 |
+
output_ids = output_ids[0, data.input_ids.size(1):]
|
278 |
+
if output_ids[-1] == processor.tokenizer.eos_token_id:
|
279 |
+
output_ids = output_ids[:-1]
|
280 |
+
response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
|
281 |
|
282 |
+
for i, text in enumerate(response.split(' ')):
|
283 |
+
if i == 0:
|
|
|
284 |
history[-1]['content'] = history[-1]['content'].rstrip('.')
|
285 |
+
history[-1]['content'] += text
|
286 |
+
else:
|
287 |
+
history[-1]['content'] += ' ' + text
|
288 |
yield history
|
289 |
|
290 |
elapsed_time = round(time.perf_counter() - start_time, 1)
|
|
|
485 |
data = data.to(device)
|
486 |
|
487 |
with model.disable_adapter():
|
488 |
+
output_ids = model.generate(
|
489 |
**data,
|
|
|
490 |
do_sample=temperature > 0,
|
491 |
temperature=temperature if temperature > 0 else None,
|
492 |
top_p=None,
|
|
|
494 |
repetition_penalty=None,
|
495 |
max_new_tokens=max_new_tokens)
|
496 |
|
497 |
+
assert data.input_ids.size(0) == output_ids.size(0) == 1
|
498 |
+
output_ids = output_ids[0, data.input_ids.size(1):]
|
499 |
+
if output_ids[-1] == processor.tokenizer.eos_token_id:
|
500 |
+
output_ids = output_ids[:-1]
|
501 |
+
response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
|
502 |
|
503 |
+
for i, text in enumerate(response.split(' ')):
|
504 |
+
if i == 0:
|
505 |
+
history[-1]['content'] = history[-1]['content'].rstrip('.')
|
|
|
|
|
506 |
history[-1]['content'] += text
|
507 |
+
else:
|
508 |
+
history[-1]['content'] += ' ' + text
|
509 |
+
yield history
|
510 |
|
511 |
elapsed_time = round(time.perf_counter() - start_time, 1)
|
512 |
history[-1]['metadata']['title'] += f' ({elapsed_time} seconds)'
|
513 |
yield history
|
514 |
|
515 |
if 'gnd' in role and do_grounding:
|
516 |
+
response = f'After zooming in and analyzing the target moment, I finalize my answer: <span style="color:green">{response}</span>'
|
517 |
else:
|
518 |
+
response = f'After watching the whole video, my answer is: <span style="color:green">{response}</span>'
|
519 |
|
520 |
history.append({'role': 'assistant', 'content': ''})
|
521 |
for i, text in enumerate(response.split(' ')):
|
|
|
539 |
print('Initializing role *verifier*')
|
540 |
model.load_adapter(nncore.join(MODEL, 'verifier'), adapter_name='verifier')
|
541 |
|
|
|
|
|
542 |
device = next(model.parameters()).device
|
543 |
|
544 |
+
main = partial(main, model=model, processor=processor, device=device)
|
545 |
|
546 |
path = os.path.dirname(os.path.realpath(__file__))
|
547 |
|