Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,193 Bytes
23fdbc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
# Modified from https://github.com/showlab/UniVTG/blob/main/eval/eval.py
import argparse
import copy
from collections import OrderedDict, defaultdict
import nncore
import numpy as np
from sklearn.metrics import precision_recall_curve
def compute_temporal_iou_batch_paired(a, b):
intersection = np.maximum(0, np.minimum(a[:, 1], b[:, 1]) - np.maximum(a[:, 0], b[:, 0]))
union = np.maximum(a[:, 1], b[:, 1]) - np.minimum(a[:, 0], b[:, 0])
return np.divide(intersection, union, out=np.zeros_like(intersection), where=union != 0)
def compute_temporal_iou_batch_cross(spans1, spans2):
areas1 = spans1[:, 1] - spans1[:, 0]
areas2 = spans2[:, 1] - spans2[:, 0]
l = np.maximum(spans1[:, None, 0], spans2[None, :, 0])
r = np.minimum(spans1[:, None, 1], spans2[None, :, 1])
inter = np.clip(r - l, 0, None)
union = areas1[:, None] + areas2[None, :] - inter
iou = inter / union
return iou, union
def interpolated_precision_recall(prc, rec):
mprc = np.hstack([[0], prc, [0]])
mrec = np.hstack([[0], rec, [1]])
for i in range(len(mprc) - 1)[::-1]:
mprc[i] = max(mprc[i], mprc[i + 1])
idx = np.where(mrec[1::] != mrec[0:-1])[0] + 1
ap = np.sum((mrec[idx] - mrec[idx - 1]) * mprc[idx])
return ap
def compute_average_precision_detection(annos, prediction, tiou_thresholds=np.linspace(0.5, 0.95, 10)):
num_thresholds = len(tiou_thresholds)
num_gts = len(annos)
num_preds = len(prediction)
ap = np.zeros(num_thresholds)
if len(prediction) == 0:
return ap
num_positive = float(num_gts)
lock_gt = np.ones((num_thresholds, num_gts)) * -1
prediction.sort(key=lambda x: -x['score'])
tp = np.zeros((num_thresholds, num_preds))
fp = np.zeros((num_thresholds, num_preds))
ground_truth_by_videoid = dict()
for i, item in enumerate(annos):
item['index'] = i
ground_truth_by_videoid.setdefault(item['video-id'], []).append(item)
for idx, pred in enumerate(prediction):
if pred['video-id'] in ground_truth_by_videoid:
gts = ground_truth_by_videoid[pred['video-id']]
else:
fp[:, idx] = 1
continue
_pred = np.array([[pred['t-start'], pred['t-end']]])
_gt = np.array([[gt['t-start'], gt['t-end']] for gt in gts])
tiou_arr = compute_temporal_iou_batch_cross(_pred, _gt)[0]
tiou_arr = tiou_arr.reshape(-1)
tiou_sorted_idx = tiou_arr.argsort()[::-1]
for t_idx, tiou_threshold in enumerate(tiou_thresholds):
for j_idx in tiou_sorted_idx:
if tiou_arr[j_idx] < tiou_threshold:
fp[t_idx, idx] = 1
break
if lock_gt[t_idx, gts[j_idx]['index']] >= 0:
continue
tp[t_idx, idx] = 1
lock_gt[t_idx, gts[j_idx]['index']] = idx
break
if fp[t_idx, idx] == 0 and tp[t_idx, idx] == 0:
fp[t_idx, idx] = 1
tp_cumsum = np.cumsum(tp, axis=1).astype(float)
fp_cumsum = np.cumsum(fp, axis=1).astype(float)
recall_cumsum = tp_cumsum / num_positive
precision_cumsum = tp_cumsum / (tp_cumsum + fp_cumsum)
for t_idx in range(len(tiou_thresholds)):
ap[t_idx] = interpolated_precision_recall(precision_cumsum[t_idx, :], recall_cumsum[t_idx, :])
return ap
def get_ap(y_true, y_pred, interpolate=True, point_11=False):
assert len(y_true) == len(y_pred), 'Prediction and ground truth need to be of the same length'
if len(set(y_true)) == 1:
if y_true[0] == 0:
return 0
else:
return 1
else:
assert sorted(set(y_true)) == [0, 1], 'Ground truth can only contain elements {0,1}'
precision, recall, _ = precision_recall_curve(y_true, y_pred)
recall = recall.astype(np.float32)
if interpolate:
for i in range(1, len(precision)):
precision[i] = max(precision[i - 1], precision[i])
if point_11:
precision_11 = [precision[np.where(recall >= t)[0][-1]] for t in np.arange(0, 1.01, 0.1)]
return np.mean(precision_11)
else:
indices = np.where(np.diff(recall))
return np.mean(precision[indices])
def compute_average_precision_detection_wrapper(input_triple, tiou_thresholds=np.linspace(0.5, 0.95, 10)):
qid, annos, prediction = input_triple
scores = compute_average_precision_detection(annos, prediction, tiou_thresholds=tiou_thresholds)
return qid, scores
def compute_mr_ap(preds, annos, iou_thds=np.linspace(0.5, 0.95, 10), max_gt_windows=None, max_pred_windows=10):
iou_thds = [float(f'{e:.2f}') for e in iou_thds]
pred_qid2data = defaultdict(list)
for d in preds:
pred_windows = d['pred_relevant_windows'][:max_pred_windows] \
if max_pred_windows is not None else d['pred_relevant_windows']
qid = d['qid']
for w in pred_windows:
pred_qid2data[qid].append({'video-id': d['qid'], 't-start': w[0], 't-end': w[1], 'score': w[2]})
gt_qid2data = defaultdict(list)
for d in annos:
gt_windows = d['relevant_windows'][:max_gt_windows] \
if max_gt_windows is not None else d['relevant_windows']
qid = d['qid']
for w in gt_windows:
gt_qid2data[qid].append({'video-id': d['qid'], 't-start': w[0], 't-end': w[1]})
qid2ap_list = dict()
data_triples = [[qid, gt_qid2data[qid], pred_qid2data[qid]] for qid in pred_qid2data]
from functools import partial
compute_ap_from_triple = partial(compute_average_precision_detection_wrapper, tiou_thresholds=iou_thds)
for data_triple in data_triples:
qid, scores = compute_ap_from_triple(data_triple)
qid2ap_list[qid] = scores
ap_array = np.array(list(qid2ap_list.values()))
ap_thds = ap_array.mean(0)
iou_thd2ap = dict(zip([str(e) for e in iou_thds], ap_thds))
iou_thd2ap['average'] = np.mean(ap_thds)
iou_thd2ap = {k: float(f'{100 * v:.2f}') for k, v in iou_thd2ap.items()}
return iou_thd2ap
def compute_mr_r1(preds, annos, iou_thds=np.linspace(0.3, 0.95, 14)):
iou_thds = [float(f'{e:.2f}') for e in iou_thds]
pred_qid2window = {d['qid']: d['pred_relevant_windows'][0][:2] for d in preds}
gt_qid2window = dict()
for d in annos:
cur_gt_windows = d['relevant_windows']
cur_qid = d['qid']
cur_max_iou_idx = 0
if len(cur_gt_windows) > 0:
cur_ious = compute_temporal_iou_batch_cross(
np.array([pred_qid2window[cur_qid]]), np.array(d['relevant_windows']))[0]
cur_max_iou_idx = np.argmax(cur_ious)
gt_qid2window[cur_qid] = cur_gt_windows[cur_max_iou_idx]
qids = list(pred_qid2window.keys())
pred_windows = np.array([pred_qid2window[k] for k in qids]).astype(float)
gt_windows = np.array([gt_qid2window[k] for k in qids]).astype(float)
pred_gt_iou = compute_temporal_iou_batch_paired(pred_windows, gt_windows)
iou_thd2recall_at_one = dict()
miou_at_one = float(f'{np.mean(pred_gt_iou) * 100:.2f}')
for thd in iou_thds:
iou_thd2recall_at_one[str(thd)] = float(f'{np.mean(pred_gt_iou >= thd) * 100:.2f}')
return iou_thd2recall_at_one, miou_at_one
def compute_mr_r5(preds, annos, iou_thds=np.linspace(0.3, 0.95, 14)):
iou_thds = [float(f'{e:.2f}') for e in iou_thds]
pred_qid2window = {d['qid']: [x[:2] for x in d['pred_relevant_windows'][:5]] for d in preds}
gt_qid2window = dict()
pred_optimal_qid2window = dict()
for d in annos:
cur_gt_windows = d['relevant_windows']
cur_qid = d['qid']
cur_max_iou_pred = 0
cur_max_iou_gt = 0
if len(cur_gt_windows) > 0:
cur_ious = compute_temporal_iou_batch_cross(
np.array(pred_qid2window[cur_qid]), np.array(d['relevant_windows']))[0]
cur_ious[np.isnan(cur_ious)] = 0
cur_max_iou_pred, cur_max_iou_gt = np.where(cur_ious == np.max(cur_ious))
cur_max_iou_pred, cur_max_iou_gt = cur_max_iou_pred[0], cur_max_iou_gt[0]
pred_optimal_qid2window[cur_qid] = pred_qid2window[cur_qid][cur_max_iou_pred]
gt_qid2window[cur_qid] = cur_gt_windows[cur_max_iou_gt]
qids = list(pred_qid2window.keys())
pred_windows = np.array([pred_optimal_qid2window[k] for k in qids]).astype(float)
gt_windows = np.array([gt_qid2window[k] for k in qids]).astype(float)
pred_gt_iou = compute_temporal_iou_batch_paired(pred_windows, gt_windows)
iou_thd2recall_at_one = dict()
for thd in iou_thds:
iou_thd2recall_at_one[str(thd)] = float(f'{np.mean(pred_gt_iou >= thd) * 100:.2f}')
return iou_thd2recall_at_one
def get_data_by_range(preds, annos, len_range):
min_l, max_l = len_range
if min_l == 0 and max_l == float('inf'):
return preds, annos
ground_truth_in_range = []
gt_qids_in_range = set()
for d in annos:
rel_windows_in_range = [w for w in d['relevant_windows'] if min_l < (w[1] - w[0]) <= max_l]
if len(rel_windows_in_range) > 0:
d = copy.deepcopy(d)
d['relevant_windows'] = rel_windows_in_range
ground_truth_in_range.append(d)
gt_qids_in_range.add(d['qid'])
submission_in_range = []
for d in preds:
if d['qid'] in gt_qids_in_range:
submission_in_range.append(copy.deepcopy(d))
if submission_in_range == ground_truth_in_range == []:
return preds, annos
return submission_in_range, ground_truth_in_range
def eval_moment_retrieval(preds, annos):
length_ranges = [[0, 10], [10, 30], [30, float('inf')], [0, float('inf')]]
range_names = ['short', 'middle', 'long', 'full']
ret_metrics = dict()
for l_range, name in zip(length_ranges, range_names):
_submission, _ground_truth = get_data_by_range(preds, annos, l_range)
print(f'{name}: {l_range}, {len(_ground_truth)}/{len(annos)}={100*len(_ground_truth)/len(annos):.2f} samples')
iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth)
iou_thd2recall_at_one, miou_at_one = compute_mr_r1(_submission, _ground_truth)
iou_thd2recall_at_five = compute_mr_r5(_submission, _ground_truth)
ret_metrics[name] = {
'MR-mIoU': miou_at_one,
'MR-mAP': iou_thd2average_precision,
'MR-R1': iou_thd2recall_at_one,
'MR-R5': iou_thd2recall_at_five
}
return ret_metrics
def compute_hl_hit1(qid2preds, qid2gt_scores_binary):
qid2max_scored_clip_idx = {k: np.argmax(v['pred_saliency_scores']) for k, v in qid2preds.items()}
hit_scores = np.zeros((len(qid2preds), 3))
qids = list(qid2preds.keys())
for idx, qid in enumerate(qids):
pred_clip_idx = qid2max_scored_clip_idx[qid]
gt_scores_binary = qid2gt_scores_binary[qid]
if pred_clip_idx < len(gt_scores_binary):
hit_scores[idx] = gt_scores_binary[pred_clip_idx]
hit_at_one = float(f'{100 * np.mean(np.max(hit_scores, 1)):.2f}')
return hit_at_one
def compute_hl_ap(qid2preds, qid2gt_scores_binary):
qid2pred_scores = {k: v['pred_saliency_scores'] for k, v in qid2preds.items()}
ap_scores = np.zeros((len(qid2preds), 3))
qids = list(qid2preds.keys())
input_tuples = []
for idx, qid in enumerate(qids):
for w_idx in range(3):
y_true = qid2gt_scores_binary[qid][:, w_idx]
y_pred = np.array(qid2pred_scores[qid])
input_tuples.append((idx, w_idx, y_true, y_pred))
for input_tuple in input_tuples:
idx, w_idx, score = compute_ap_from_tuple(input_tuple)
ap_scores[idx, w_idx] = score
mean_ap = float(f'{100 * np.mean(ap_scores):.2f}')
return mean_ap
def compute_ap_from_tuple(input_tuple):
idx, w_idx, y_true, y_pred = input_tuple
if len(y_true) < len(y_pred):
y_pred = y_pred[:len(y_true)]
elif len(y_true) > len(y_pred):
_y_predict = np.zeros(len(y_true))
_y_predict[:len(y_pred)] = y_pred
y_pred = _y_predict
score = get_ap(y_true, y_pred)
return idx, w_idx, score
def mk_gt_scores(gt_data, clip_length=2):
num_clips = int(gt_data['duration'] / clip_length)
saliency_scores_full_video = np.zeros((num_clips, 3))
relevant_clip_ids = np.array(gt_data['relevant_clip_ids'])
saliency_scores_relevant_clips = np.array(gt_data['saliency_scores'])
saliency_scores_full_video[relevant_clip_ids] = saliency_scores_relevant_clips
return saliency_scores_full_video
def eval_highlight(preds, annos):
qid2preds = {d['qid']: d for d in preds}
qid2gt_scores_full_range = {d['qid']: mk_gt_scores(d) for d in annos}
gt_saliency_score_min_list = [2, 3, 4]
saliency_score_names = ['Fair', 'Good', 'VeryGood']
highlight_det_metrics = dict()
for gt_saliency_score_min, score_name in zip(gt_saliency_score_min_list, saliency_score_names):
qid2gt_scores_binary = {
k: (v >= gt_saliency_score_min).astype(float)
for k, v in qid2gt_scores_full_range.items()
}
hit_at_one = compute_hl_hit1(qid2preds, qid2gt_scores_binary)
mean_ap = compute_hl_ap(qid2preds, qid2gt_scores_binary)
highlight_det_metrics[f'HL-min-{score_name}'] = {'HL-mAP': mean_ap, 'HL-Hit1': hit_at_one}
return highlight_det_metrics
def qvhighlights_eval(preds, annos):
pred_qids = set([e['qid'] for e in preds])
gt_qids = set([e['qid'] for e in annos])
assert pred_qids == gt_qids, 'qids in annos and preds must match'
eval_metrics = dict()
eval_metrics_brief = OrderedDict()
if 'pred_relevant_windows' in preds[0]:
moment_ret_scores = eval_moment_retrieval(preds, annos)
eval_metrics.update(moment_ret_scores)
moment_ret_scores_brief = {
'MR-full-mAP': moment_ret_scores['full']['MR-mAP']['average'],
'[email protected]': moment_ret_scores['full']['MR-mAP']['0.5'],
'[email protected]': moment_ret_scores['full']['MR-mAP']['0.75'],
'MR-short-mAP': moment_ret_scores['short']['MR-mAP']['average'],
'MR-middle-mAP': moment_ret_scores['middle']['MR-mAP']['average'],
'MR-long-mAP': moment_ret_scores['long']['MR-mAP']['average'],
'MR-short-mIoU': moment_ret_scores['short']['MR-mIoU'],
'MR-middle-mIoU': moment_ret_scores['middle']['MR-mIoU'],
'MR-long-mIoU': moment_ret_scores['long']['MR-mIoU'],
'MR-full-mIoU': moment_ret_scores['full']['MR-mIoU'],
'[email protected]': moment_ret_scores['full']['MR-R1']['0.3'],
'[email protected]': moment_ret_scores['full']['MR-R1']['0.5'],
'[email protected]': moment_ret_scores['full']['MR-R1']['0.7'],
'[email protected]': moment_ret_scores['full']['MR-R5']['0.3'],
'[email protected]': moment_ret_scores['full']['MR-R5']['0.5'],
'[email protected]': moment_ret_scores['full']['MR-R5']['0.7']
}
eval_metrics_brief.update(sorted([(k, v) for k, v in moment_ret_scores_brief.items()], key=lambda x: x[0]))
if ('pred_saliency_scores' in preds[0]) and ('saliency_scores' in annos[0]):
if isinstance(annos[0]['saliency_scores'], list):
highlight_det_scores = eval_highlight(preds, annos)
eval_metrics.update(highlight_det_scores)
highlight_det_scores_brief = dict([(f"{k}-{sub_k.split('-')[1]}", v[sub_k])
for k, v in highlight_det_scores.items() for sub_k in v])
eval_metrics_brief.update(highlight_det_scores_brief)
eval_metrics_brief['HL-min-VeryGood-mAP'] = eval_metrics_brief.pop('HL-min-VeryGood-mAP')
eval_metrics_brief['HL-min-VeryGood-Hit1'] = eval_metrics_brief.pop('HL-min-VeryGood-Hit1')
final_eval_metrics = OrderedDict()
final_eval_metrics['brief'] = eval_metrics_brief
final_eval_metrics.update(sorted([(k, v) for k, v in eval_metrics.items()], key=lambda x: x[0]))
return final_eval_metrics
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('pred_path')
parser.add_argument('--anno_path', default='data/qvhighlights/highlight_val_release.jsonl')
parser.add_argument('--out_name', default='metrics.log')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
if nncore.is_dir(args.pred_path):
log_file = nncore.join(args.pred_path, args.out_name)
else:
log_file = nncore.same_dir(args.pred_path, args.out_name)
nncore.set_default_logger(logger='eval', fmt=None, log_file=log_file)
if nncore.is_dir(args.pred_path):
pred_paths = nncore.ls(args.pred_path, ext=['json', 'jsonl'], join_path=True, sort=True)
nncore.log(f'Total number of files: {len(pred_paths)}\n')
preds = nncore.flatten([nncore.load(p) for p in pred_paths])
else:
nncore.log(f'Loading predictions from {args.pred_path}')
preds = nncore.load(args.pred_path)
annos = nncore.load(args.anno_path)
res = qvhighlights_eval(preds, annos)['brief']
for k, v in res.items():
nncore.log(f'{k}: {v}')
|